博碩士論文 100621020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.215.182.36
姓名 伍孟璟(Meng-Ching Wu)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析
(Sensitivity analysis of ozone's nonlinearity and source contribution for a high ozone event in Taiwan: 2011 case study)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
★ 探討地表參數對台灣地區氣象模擬的影響★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響
★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬
★ 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響
★ 開發適用於大氣邊界層觀測的無人機系統★ 雲林地區細懸浮微粒的來源解析
★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣逐年上升的臭氧(O3)已成為重要的空氣污染議題。但O3並非直接排放,而是由前驅物氮氧化物(nitrogen oxides,NOx)與揮發性有機物(volatile organic compounds,VOC),經一連串光化反應而產生。由於O3形成機制複雜且非線性,透過模式進行敏感度分析 (如:改變前驅物的排放量),可以評估O3隨前驅物的時空分布變化。不同於以往的Brute Force Method (BFM),High-order Decoupled Direct Method (HDDM) 提供了一個更有效的方式進行敏感度分析。本篇研究使用多尺度空氣品質模式(Community Multi-scale Air Quality Modeling system)搭配高階去耦合直接方法(CMAQ-HDDM),探討2011年10月18至24日高臭氧汙染事件裡臭氧的非線性反應,以及估算在高臭氧區裡不同源區及源類別的貢獻量。
由環保署資料顯示,此個案於南高屏地區觀測到的O3在23日及24日超標,為臭氧事件日,因此針對這兩天進行三組敏感度實驗。第一組實驗主要探討模擬範圍內,前驅物的擾動量對於O3的敏感性。第二組實驗主要討論源區與受區的關係,其中源區分成五個區塊來討論:雲林、嘉義、台南、高雄及屏東,進而評估各源區的汙染物對於南高屏地區O3的影響。第三組實驗則是在判別各種排放源類別對於O3生成之重要性。
在模擬結果與觀測的比對裡,兩者大致相符,NOx和O3的RMSE結果分別為17.6及19.2 ppb。另外,HDDM和BFM的結果也很接近,所以CMAQ-HDDM的結果,具有相當的可信度。根據Base case風場分析發現: 23日南高屏地區風場呈現明顯停滯帶,而24日南高屏地區的局部環流明顯,風速也較前天高。
在第一組實驗中:由一階敏感度係數的結果及O3等值線分析都顯示,鄰近源區(如:台北、台中、高雄)的地方因環境中NOx過多,由滴定效應為主,為VOC限制區;然而在下風處(如:屏東),則為NOx和VOC過渡帶。二階敏感度的結果則顯示在白天高臭氧區有顯著的非線性反應及前驅物之間的交互作用。在第二組實驗中:根據臭氧1小時及8小時最大值的貢獻量分析結果發現,23日高值出現於台南,污染源由當地排放為主。而24日由於風速較強,導致O3高值出現於屏東,污染源主要來自於高雄,而台南與高雄之間交互作用之貢獻量也不容小覷。在第三組實驗結果裡,人為源對於臭氧之敏感性較生物源來得明顯。進一步分析各類別源的對於臭氧之貢獻量發現,NOx以線源最主要之排放源,而VOC則是以面源最主要之排放源。此外,生物源及人為源之間的交互作用對於臭氧的貢獻量也有舉足輕重的影響(-10 ~ -12%)。
總結此個案中的結果,我們發現O3高值發生時,受到大氣擴散作用的不同,O3前驅物的成份也有差異,此研究成果有助於我們瞭解如何有效的控管排放源,以減少大氣中的O3濃度。
摘要(英) Elevated O3 concentration has been an important environmental issue in Taiwan. O3 is a secondary air pollutant driven by photochemical reactions involving primary air pollutants such as volatile organic compounds (VOC) and nitrogen oxides (NOx, NO and NO2). Sensitivity analysis is vital for O3 due to the nonlinearity and complex reaction. Unlike Brute Force Method (BFM) where model simulations are repeated with different model inputs, HDDM offers an alternative by directly solving sensitivity equations derived from the governing equations of the model. Thus, HDDM provides an accurate and effective way to perform sensitivity analysis. In this study, the Community Multi-scale Air Quality Modeling system coupled with Higher-Order Direct Decoupled Method (CMAQ-HDDM) was applied for a high O3 event from October 18th to 24th 2011. Three sensitivity experiments were designed to investigate nonlinear response of O3 with respect to its precursor emissions and to quantify the emission contributions from different source regions and categories for the area where high O3 concentration occurs.
The base-case model result is in a good agreement with the observation on meteorological and pollutant fields. The comparison between BFM and HDDM is in a similar pattern as well, providing a reliable HDDM simulation for further analysis. For the first sensitivity experiment, the aim is to explore how O3 respond to the precursor’s emission. Results indicate most of source region exhibited VOC-limited region, while over the downwind area, both NOx and VOC contributes for O3 production (NOx and VOC transition region). For the second sensitivity experiment, as the northeasterly wind prevailed throughout the event, five possible source region are assigned (including Yulin, Chiayi, Tainan, Kaohsiung, and Pingtung) to estimate the contribution where high O3 concentration occurs. There were stagnant conditions over southern Taiwan on Oct. 23rd, the highest O3 occurred near Tainan city, and most pollutants were from local emissions. However, the local circulation is more pronounced on Oct. 24th, and the highest O3 occurred in downwind area, Pingtung where the emission from Kaohsiung is the main contributor. Furthermore, the importance of various emission source categories is discussed. Among the anthropogenic emissions, the mobile NOx emission and area VOC emission mainly contributes for high O3 concentration. The cross effect between biogenic VOC emission and anthropogenic NOx is also a moderate contributor (about -10 ~ -12%).
In conclusion, due to changes of the meteorological conditions, the emissions were redistributed on Oct. 23rd and 24th. The results from this study can support the policy makers to build an efficient control strategy for reducing O3 concentrations.
關鍵字(中) ★ 臭氧
★ 高階去偶合直接方法
關鍵字(英) ★ Ozone
★ HDDM
論文目次 List of Contents
摘要………………………………………………………………………………………i
Abstract…………………………………………………………………………ii
致謝……………………………………………………………………………………iii
List of Contents……………………………………………………iv
List of Tables…………………………………………………………vi
List of Figures………………………………………………………vii
Chapter 1 Introduction………………………………………………………1
1-1 Background…………………………………………………………………………………………………1
1-2 Motivation, case selection, and objective………………6
1-3 Framework……………………………………………………………………………………………………6
Chapter 2 Data and Methodology…………………………………………………………………7
2-1 Data source and model introduction……………………………………………7
2-1-1 Meteorological and air pollutant observation data………………………………………………………………………………………………………………………………………7
2-1-2 Meteorological model: WRF………………………………………………………………7
2-1-3 Emission input data process…………………………………………………………7
2-1-4 Air quality model: CMAQ……………………………………………………………………8
2-2 Methods……………………………………………………………………………………………………………………9
2-2-1 Sensitivity analysis method: High Order Decouple Direct method (HDDM) and Brute Force Method (BFM)………………9
2-2-2 HDDM extension: Zero-out source contribution(ZOC)…11
2-2-3 O3 isopleth………………………………………………………………………………………………………12
2-2-4 Statistical data analysis method………………………………………………12
Chapter 3 Case introduction and observation data analysis………………………………………………………………………………………………………………………………13
3-1 Analysis of synoptic weather pattern and meteorological variables……………………………………………………………………………………………………………………………13
3-2 O3 time series analysis……………………………………………………………………………14
Chapter 4 Model simulation results and Discussion…………………15
4-1 Validation between observation and model results…………15
4-1-1 Time series comparison in meteorological field…………15
4-1-2 Statistical analysis………………………………………………………………………………15
4-2 Comparison between BFM and HDDM………………………………………………………16
4-3 Base case results and analysis…………………………………………………………17
4-3-1 Wind field spatial plot analysis………………………………………………17
4-3-2 O3 spatial plot……………………………………………………………………………………………17
4-4 First sensitivity experimental design and results………18
4-4-1 Spatial results analysis……………………………………………………………………18
4-4-2 O3 isopleth analysis………………………………………………………………………………19
4-5 Second sensitivity experimental design and results……20
4-5-1 The peak hour and the maximum averaged 8-hour O3 contribution analysis……………………………………………………………………………………………20
4-6 Third sensitivity experimental design and results…………………………………………………………………………………………………………………………………22
4-6-1 Spatial results analysis……………………………………………………………………22
4-6-2 The peak hour O3 contribution analysis………………………………23
Chapter 5 Conclusion and future work……………………………………………………25
References…………………………………………………………………………………………………………………………27
Tables……………………………………………………………………………………………………………………………………30
Figures…………………………………………………………………………………………………………………………………36










參考文獻 References
行政院環保署網頁,http://ivy5.epa.gov.tw/epalaw/docfile/040060.pdf
經濟部工業局,台灣工業用地供給與服務資訊網,100年度報告
http://idbpark.moeaidb.gov.tw/Content/Files/Report/Files/100-4-1.pdf
江宙君,2007:海陸風對台灣沿海地區空氣品質之影響。國立中央大學碩士論文
簡珊萍,2013:探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響。國立中央大學碩士論文
Arya, S. P. 1999: Air pollution meteorology and dispersion, 1st ed, 9, New York: Oxford University Press.
Banta, Y. R. M., C. J. Senff, J. N. Gammon, L. S. Darby, T. B. Ryerson, R. J. Alvarez, S. P. Sandberg, E. J. Williams, and M. Trainer, 2005: A bad air day in Houston, Bulletin of the American Meteorological Society, 86, 657-669.
Chang, K. H, Yu, J. Y., Chen, T. F., and Lin, Y. P., 2009: Estimating Taiwan biogenic VOC emission: leaf energy balance consideration. Atmospheric Environment, 43, 5092-5100.
Chen, K. W. and F.Y. Cheng, 2013: Documentation of emission processing procedure. Environmental modeling laboratory, Dept. of Atmospheric Sciences, National Central University.
Cheng, F. Y., Y. C. Hsu, P. L. Lin, and T. H. Lin, 2013: The effects of different land use and cover patterns on mesoscale meteorological simulations over Taiwan. Journal of Applied Meteorology and Climatology, 52, 570-587.
Cohan, D. S., A. Hakami, Y. T. Hu, and A. G. Russell, 2005: Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis. Environ. Sci. Technol., 39, 6739−6748.
Hakami, A., M. T. Odman, and A.G. Russell, 2003: High-order, direct sensitivity analysis of multidimensional air quality models. Environmental Science & Technology. 37, 2442-2452.
Hakami, A., M. T. Odman, and A. G. Russell, 2004: Nonlinearity in atmospheric response: A direct sensitivity analysis approach. Journal of Geophysical Research, 109, doi: 10.1029/2003JD004502.
Itahashi, S., I. Uno, and S. Kim, 2012: Source Contributions of Sulfate Aerosol over East Asia Estimated by CMAQ-DDM, Environ. Sci. Technol., 46, 6733−6741.
Jin, L., J., S. Tonse, D. S. Cohan, X. L. Mao, R. A. Harley, and N. J. Brown, 2008: Sensitivity analysis of ozone formation and transport for a central California air pollution episode, Environ. Sci. Technol., 42, 3683-3689.
Koo, B., G. Yarwood, and D. S. Cohan, 2008: Final Report: Higher-order decoupled direct method (HDDM) for ozone modeling sensitivity analyses and code refinements. Novato, California, Environ International Corporation
Lin, C. Y., Z. Wang, Charles C. K. Chou., C. C. Chang, and S. C. Liu, 2006: A numerical study of an autumn high ozone episode over southwestern Taiwan, Atmospheric Environment, 41, 3684–3701.
Napelenok, S. L., D. S. Cohan, Y. T. Hu, and A. G. Russell, 2006: Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM). Atmospheric Environment, 40, 6112-6121.
Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric chemistry and physics: from air pollution to climate change, 2nd ed., 904. New Jersey: John Wiley & Sons.

Tang, W., D. S. Cohan, G. A. Morris, and D. W. Byun, 2011: Influence of vertical mixing uncertainties on ozone simulation in CMAQ, Atmospheric Environment, 45, 2898-2909.
Tsai, D.M. and Y. L. Wu, 2006: Effects of highway networks on ambient ozone concentrations - A case study in southern Taiwan, Atmospheric Environment, 40, 4004–4015.
Tseng, K. H., C. L. Chen, M. D. Lin, K. H. Chang, and B. J. Tsuang, 2009: Vertical profile of ozone and accompanying air pollutant concentrations observed at a downwind foothill site of industrial and urban areas, Aerosol and Air Quality Research, 9, 421-434.
Xiao, X., D. S. Cohan, D. W. Byun, and F. Ngan, 2010: Highly nonlinear ozone formation in the Houston region and implications for emission controls, J. Geophys. Res., 115, D23309.
指導教授 鄭芳怡 審核日期 2014-4-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明