博碩士論文 100622013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:107.21.85.250
姓名 李欣樺(Hsin-Hua Lee)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 隱沒帶不同耦合型態的地震特性分析:外部隆起地震與地震所引起的重力位能變化
(Seismic characteristics in the different seismic coupling subduction zones : outer-rise earthquake and the change of gravitational potential energy caused by earthquake.)
相關論文
★ 台灣西南外海永安海脊區域之速度構造與天然氣水合物飽和度研究★ 利用TAMS初步分析台灣東部海域海底地震儀資料
★ 由海底地震儀資料探討加瓜海脊鄰近區域之地震構造★ 利用海底地震儀分析颱風對於海底震波雜訊的 影響
★ 由海底地震儀資料探討台灣東部海域之地震地體構造★ 由海底地震儀資料探討宜蘭外海琉球 隱沒帶之地震地體構造
★ 全球隱沒帶的板塊撓曲量模擬和地震活動相關性分析★ 利用寬頻地震儀分析颱風期間的低頻訊號來源
★ 利用背景噪訊技術探討台灣近海海底淺層沉積物之剪力波速度★ 利用海底地震儀資料探討北馬尼拉隱沒帶之地震地體構造
★ 利用海底仿擬反射訊號深度估算台灣西南海域地溫梯度分布研究★ 由海底地震儀資料探討南沖繩海槽熱液活動
★ 以寬頻地震儀及分壓計之波形分析環境變動過程:與流體力學相關
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
為了重新檢視隱沒帶的孕育構造與機制,本研究使用全球地震目錄(GCMT)1976年1月1日到2011年12月31日所記錄到的資料,並以Christensen and Ruff (1983)所提出的方式,利用隱沒帶板塊外部隆起的地震特性,判斷耦合程度的方法來檢視隱沒帶的孕震特性。另外,我們藉由討論大陸板塊上震前地震所造成重力位能隨時間改變量的變化,對於大地震發生前的應力和地震活動變化能夠有更進一步的解釋與了解。
本研究首先將隱沒帶以Ruff and Kanamori (1980)所提出不同的耦合型態做分類,並且搜索隱沒帶內的地震資料,找出符合板塊外部隆起條件的地震事件。藉由不同隱沒帶內板塊外部隆起地震事件在震前與震後的變化情形,分析大型隱沒帶地震的孕震機制。結果顯示約於外部隆起聚合性地震產生後的4至43年間,在其相對應隱沒帶上會有大型逆衝型地震的發生,顯示此模型的確可以用來評估隱沒帶內地震潛勢的大小。並且本研究在阿拉斯加與阿留申海溝、日本東北、秘魯與智利的區域皆發現有外部隆起聚合性地震,但無相對應的大型隱沒帶逆衝地震,因此這些區域可能具有高地震潛勢。另一方面,弱耦合帶區域主要觀察到的外部隆起地震多為伸張性的地震事件,例如琉球與伊豆小笠原海溝,此現象與Christensen and Ruff (1988)所觀察到的結果相符合。而在強耦合的隱沒帶下,通常在規模大於8的逆衝型地震事件發生之後,立即可以看見伸張性的外部隆起地震。進一步的分析更發現除了智利隱沒帶外,地震後伸張性外部隆起地震事件的持續時間與地震規模之間的呈現正相關性。反之,規模小於8的地震事件,在地震後並無法清楚地看見伸張性的地震的發生。
為了能夠更清楚了解大型逆衝型地震發生前的地震活動變化,本研究藉由Bowman (1988)的方式得到各隱沒帶的地震範圍大小。我們分析地震範圍內由地震所引起的重力位能累積量隨時間的變化。結果顯示在大型逆衝型地震發生前,震源區域內震前由地震所引起的重力位能變化隨時間變化斜率有增加的趨勢。顯示出大型逆衝型地震發生前,震源區可能有忽然升高能量釋放的情形。統計結果顯示,重力位能累積改變量越大,之後產生的地震其規模也越大。
摘要(英) Characterizing the seismogenic zone of major subduction plate boundaries provides us a possibility to reduce large earthquake hazard.
In the past several decades, many scientists have analyzed various geophysical methods and datasets, such as seismic and geodetic ground motion data, historical tsunami deposits, aftershock distributions, and seafloor bathymetry, trying to understand the mechanisms behind great devastating earthquakes, and to estimate the probability of a major earthquake occurrence in the future.
In this study, by using the global earthquake catalog (GCMT) from January 1, 1976 to December 31, 2011, we firstly re-examines the outer-rise earthquake model proposed by the Christensen and Ruff (1988) at the subduction zones suggested to have different coupling levels. The compressive stress cumulated during the subducting processes are often reflected by the occurrence of compressional outer-rise earthquakes. Thus, in the region where the compressional outer-rise earthquakes take place without any corresponding large underthrusting earthquakes, the seismic potential is usually considered to be high. We re-examined the high seismic potential areas determined by this criteria in Christensen and Ruff (1988) and confirm that the large underthrusting earthquakes did really occur in the 30 years following the appearance of compressional outer-rise events, such as in Tonga region in the vicinity of 20゚S, a Mw 8.3 large earthquake occurred in 2006. This result represents that the outer-rise earthquake model could be an indicator for the generation of large earthquakes along subduction zones. In addition, to have a more accurate estimation for the seismic potential, we discuss the relationship between the generation of earthquakes and the change of cumulative gravitational potential energy caused by earthquakes (DGPE) over time. Our result shows an acceleration of DGPE before large earthquakes.
Our result also shows that the extensional outer-rise events for strong seismic coupling subduction zone only presented after the occurrence of earthquakes with magnitude larger than 8, for instance, after the 2012 March Mw 9.1 Tohoku, the 2010 February Mw 8.8 Chili and the 2006 November Mw 8.3 Kamchatka earthquakes, which is consistent with the analysis performed by Christensen and Ruff (1988). Based on our analysis, the outer rise earthquakes occur immediately after the main event which does not coincide with the result stating in Christensen and Ruff (1988) that they occur in the 30 years after the earthquake. In addition, the duration of the extensional outer-rise earthquakes occurrence appears to be correlated with its magnitude. Meanwhile, for the earthquakes with magnitude smaller than 8, as well as in the weak coupling areas, this observation is not engaged.
關鍵字(中) ★ 外部隆起地震
★ 重力位能改變
★ 隱沒帶
關鍵字(英) ★ outer-rise earthquake
★ gravitational potential energy
★ subduction zone
論文目次 摘要......i
Abstract......iii
致謝.....v
目錄.....vi
圖目錄.......viii
表目錄......x
第一章緒論......1
1.1 研究動機與目的......1
1.2 本文內容......3
第二章 前人研究....4
2.1前人研究.....4
2.2全球隱沒帶地體活動背景介紹.....8
2.2.1弱耦合帶型隱沒帶.....9
2.2.2強耦合帶型隱沒帶......11
第三章 資料處理原理及方法......31
3.1資料來源....31
3.2分析方法.....32
3.2.1地震影響區域範圍(circular region).....32
3.2.2地震所引起重力位能改變的計算原理.....34
3.3資料處理流程.....38
3.3.1板塊外部隆起的地震事件.....38
3.3.2震前重力位能的改變量.....38
第四章 研究成果.....46
4.1板塊外部隆起地震的分布.......46
4.2震前重力位能的改變......55
4.2.1地震範圍......56
4.2.2重力位能的斜率改變量......56
第五章 討論.......79
5.1整合隱沒帶內外部隆起地震的特性......79
5.1.1弱耦合帶......79
5.1.2強耦合帶......79
5.2與Christensen and Ruff (1988)觀測到的外部隆起事件做比較.......81
5.2.1高地震潛勢區域及其相對應地震......82
5.3大型地震前震區內地震引起重力位能改變.....83
5.3.1地震範圍的物理意義......83
5.3.2地震所引起的累積重力位能改變.......84
第六章 結論.......95
參考文獻......97
參考文獻 Aki, K. and P. G. Richards, 2002. Quantitative seismology, University Science Books, Sausalito, CA.
Ammon, C. J., et al. ,2011. A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets and Space 63(7): 693-696.
Bird, P., 2003. An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems 4(3) : 1027, doi:10.1029/
2001GC000252.
Bonnardot, M. A., et al., 2007. Seismicity and state of stress within the overriding plate of the Tonga‐Kermadec subduction zone, Tectonics 26, TC5017. doi:10.1029/2006TC002044.
Bowman, D. D., et al., 1998. An observational test of the critical earthquake concept, Journal of Geophysical Research, 103, 24, 359-372.
Bufe, C. G. and D. J. Varnes, 1993. Predictive modeling of the seismic cycle of the greater San Francisco Bay region, Journal of Geophysical Research: Solid Earth (1978–2012) 98(B6): 9871-9883.
Christensen, D. H. and L.J. Ruff, 1983. Outer‐rise earthquakes and seismic coupling, Geophysical Research Letters 10(8): 697-700.
Christensen, D. H. and L. J. Ruff, 1988. Seismic coupling and outer rise earthquakes, Journal of Geophysical Research 93(B11): 13421-13413, 13444.
Dmowska, R., et al., 1996. Seismicity and deformation at convergent margins due to heterogeneous coupling, J Journal of Geophysical Research –all series- 101: 3015-3029.
Dowrick, D. J. and D. A. Rhoades, 2004. Relations between earthquake magnitude and fault rupture dimensions: How regionally variable are they?, Bulletin of the Seismological Society of America 94(3): 776-788.
Fitch, T. J. et al., 1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes, Journal of Geophysical Research 85(B7): 3817-3828.
Gahalaut, V. and J. Catherine, 2006. Rupture characteristics of 28 March 2005 Sumatra earthquake from GPS measurements and its implication for tsunami generation, Earth and Planetary Science Letters 249(1): 39-46.
Guzmán-Speziale, M., 2001. Active seismic deformation in the grabens of northern Central America and its relationship to the relative motion of the North America–Caribbean plate boundary, Tectonophysics 337(1): 39-51.
Hanks, T. C., 1971. The Kuril Trench‐Hokkaido Rise System: Large Shallow Earthquakes and Simple Models of Deformation, Geophysical Journal of the Royal Astronomical Society 23(2): 173-189.
Hashimoto, C. et al., 2009. Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion, Nature Geoscience 2(2): 141-144.
Heaton, T. H. and H. Kanamori, 1984. Seismic potential associated with subduction in the northwestern United States, Bulletin of the Seismological Society of America 74(3): 933-941.
Huang, Y., et al., 1998. Precursors, aftershocks, criticality and self-organized criticality, EPL (Europhysics Letters) 41(1): 43-48.
Igarashi, T., 2010. Spatial changes of inter-plate coupling inferred from sequences of small repeating earthquakes in Japan, Geophysical Research Letters 37(20): L20304, doi:10.1029/2010GL044609.
Kamata, H. and K. Kodama, 1994. Tectonics of an arc-arc junction: An example from Kyushu Island at the junction of the Southwest Japan Arc and the Ryukyu Arc, Tectonophysics 233(1): 69-81.
Kanamori, H., 1971. Great earthquakes at island arcs and the lithosphere, Tectonophysics 12(3): 187-198.
Kanamori, H. and D. L. Anderson, 1975. Theoretical basis of some empirical relations in seismology, Bulletin of the Seismological Society of America 65(5): 1073-1095.
Katsumata, K., 2011. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake(M= 9. 0), Earth Planets and Space 63(7): 709-712.
Kawasaki, I., et al., 2001. Space–time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan trench, Tectonophysics 330(3): 267-283.
Kelleher, J. and W. McCann, 1977. Bathymetric highs and the development of convergent plate boundaries, Maurice Ewing Series 1: 115-122.
Knopoff, L. and M. J. Randall, 1970. The compensated linear-vector dipole: a possible mechanism for deep earthquakes, Journal of Geophysical Research 75(26): 4957-4963.
Kubo, A. and E. Fukuyama, 2003. Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes, Earth and Planetary Science Letters 210(1): 305-316.
Lallemand, S. E., et al., 1998. Genetic relations between the central and southern Philippine Trench and the Sangihe Trench, Journal of Geophysical Research 103: 933-950
Lay, T., et al., 1982. The asperity model and the nature of large subduction zone earthquakes, Earthquake Prediction Research, 3–71.
Lay, T. and T. C. Wallace, 1995. Modern global seismology, Academic , San Diego ,CA.
Lo, C. L. and S. K. Hsu, 2005. Earthquake‐induced gravitational potential energy change in the active Taiwan orogenic belt, Geophysical Journal International 162(1): 169-176.
Loveless, J. P. and B. J. Meade, 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, Journal of Geophysical Research 115(B2): B02410, doi:10.1029/2008JB006248.
Maercklin, N., et al., 2012. Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake, Scientific reports 2 ,709, doi:10.1038/srep00709.
Mazzotti, S., et al., 2000. Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS, Journal of Geophysical Research 105(B6): 13159-13113, 13177.
Mazzotti, S., et al., 2000. Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS, Journal of Geophysical Research 105(B6): 13159-13113, 13177.
Minoura, K., et al., 2001. The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan, Journal of Natural Disaster Science 23(2): 83-88.
Molnar, P. and T. Atwater, 1978. Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere, Earth and Planetary Science Letters 41(3): 330-340.
Moreno, M., et al. ,2012. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth and Planetary Science Letters 321: 152-165.
Mrozowski, C. L., et al., 1982. Complexities in the tectonic evolution of the West Philippine Basin, Tectonophysics 82(1): 1-24.
Newman, A. V., et al., 2011. The energetic 2010 MW 7.1 Solomon Islands tsunami earthquake, Geophysical Journal International 186(2): 775-781.
Okamoto, T. and T. Tanimoto, 2002. Crustal gravitational energy change caused by earthquakes in the western United States and Japan, Earth and Planetary Science Letters 195(1): 17-27.
Pacheco, P., et al., 1993. Antiviral activity of Chilean medicinal plant extracts, Phytotherapy Research 7(6): 415-418.
Peterson, E. T. and T. Seno, 1984. Factors Affecting Seismic Moment Release Rates, Journal of Geophysical Research 89(B12): 10, 233-210, 248.
Ramos, N. T., et al., 2012. Uplifted marine terraces in Davao Oriental Province, Mindanao Island, Philippines and their implications for large prehistoric offshore earthquakes along the Philippine trench, Journal of Asian Earth Sciences 45: 114-125.
Rangin, C., et al., 1999. Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary: the Philippines and eastern Indonesia, Geophysical Journal International 139(2): 296-316.
Ratzov, G., et al., 2007. Submarine landslides along the North Ecuador–South Colombia convergent margin: possible tectonic control, Submarine Mass Movements and Their Consequences, Springer: 47-55.
Ruegg, J., et al., 2009. Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile, Physics of the Earth and Planetary Interiors 175(1): 78-85.
Ruff, L. and H. Kanamori, 1980. Seismicity and the subduction process, Physics of the Earth and Planetary Interiors 23(3): 240-252.
Ruff, L. and H. Kanamori, 1983. Seismic coupling and uncoupling at subduction zones,Tectonophysics 99(2): 99-117.
Satake, K., et al., 1992. Tsunami from the Mariana Earthquake of April 5, 1990: Its abnormal propagation and implications for tsunami potential from outer‐rise earthquakes, Geophysical Research Letters 19(3): 301-304.
Shinjo, R., 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system, Chemical Geology 157(1): 69-88.
Steblov, G. M., et al., 2008. Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS, Geophysical Research Letters 35(22), L22306, doi:10.1029/2008GL035572.
Stern, R. J., 2002. Subduction zones, Reviews of Geophysics 40(4): 1012 , doi:10.1029/2001RG000108.
Stern, R. J., et al., 2003. An overview of the Izu-Bonin-Mariana subduction factory, Geophysical Monograph-American Geophysical union 138: 175-222
Takeuchi, H. and M. Saito, 1972. Seismic surface waves, Methods in computational physics 11: 217-295.
Taylor, R. N. and R. W. Nesbitt, 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu–Bonin Arc, Japan, Earth and Planetary Science Letters 164(1): 79-98.
Uchida, N. and T. Matsuzawa, 2011. Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from small repeating earthquake data, Earth Planets and Space 63(7): 675-679.
Uyeda, S. and H. Kanamori, 1979. Back-arc opening and the mode of subduction, J. geophys. Res 84(3): 1049-1061.
Wang, K. and K. Suyehiro, 1999. How does plate coupling affect crustal stresses in Northeast and Southwest Japan?, Geophysical Research Letters 26(15): 2307-2310.
Wesson, R. L., et al., 2008. Challenges in making a seismic hazard map for Alaska and the Aleutians, Geophysical Monograph Series 179: 385-397.
Yumul, G. P., et al., 2008. Tectonic setting of a composite terrane: a review of the Philippine island arc system, Geosciences Journal 12(1): 7-17.
鄭惠文,結合連續格點搜尋與地震矩張量逆推技術即時監測台灣東北外海地震活動。中央大學地球物理研究所學位論文,2011年。
羅仲良,板塊邊界地震引起之重力位能變化。中央大學地球物理研究所學位論文,2006 年。
指導教授 林靜怡(Lin Jing-Yi) 審核日期 2013-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明