博碩士論文 100623014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.222.22.244
姓名 謝怡凱(Yi-Kai Hsieh)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 運用西蜜斯衛星資料研究低頻帶升調合唱波的重複發生週期之分布
(An analysis of distributions of the repetition period of lower-band rising-tone chorus waves using THEMIS observations)
相關論文
★ 磁暴與磁副暴的關係:檢視跨磁尾電流對 SYM-H 的貢獻★ 磁尾的磁場延伸和偶極化現象與磁副暴發生位置的距離關係之探討
★ 二胞型極光與行星際磁場間的關係★ 磁層頂位置之不對稱性研究
★ 兩類快速電漿流事件與夜側極光活動關係之研究★ 太陽風對地球磁層頂內側磁場之影響
★ 磁層頂日下點對峙距離和行星際磁場錐角值關係的研究★ 太空環境中的兩個觀測難題: 前艏震波區域波擾動斜向傳播現象與 接觸不連續面的存在證據
★ 徑向行星際磁場事件之特性及其對磁層之影響★ 太空天氣對Formosat-2及Formosat-3異常事件影響之分析
★ 多能量通道之極區沉降粒子研究★ 徑向行星際磁場下日側極光與電離層對流型態
★ 水星磁層對行星際磁場與太陽風動壓的反應★ 應用長短期記憶遞迴神經網路預測Kp地磁指數
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 合唱波在地球內磁層產生,受高能電子漂移路徑影響,其主要發生在電漿球層外、磁層頂以內的近磁赤道區域,合唱波產生之後會沿著磁力線傳播,並會與當地的電子進行交互作用,進而加速電子。連續出現的分立波元是合唱波的特徵,分立波元出現的時間差稱為重複發生週期。本研究中使用西蜜斯衛星的高時間解析度磁場資料觀測資料來探討低頻帶升調合唱波的重複發生週期在空間分布上的變化,並研究重複發生週期與相關磁層中背景參數之關係。研究發現在夜側和晨側區域的合唱波重複發生週期分布較集中,平均值也較小,分別為0.56和0.54秒,而日側和昏側區域的重複發生週期分布較廣,週期有長有短,其平均值約為夜側和晨側的2倍。將重複發生週期與背景電漿參數比較後,發現電子溫度是影響各區域重複發生週期變化的因素之一,當電子溫度越低時,該區域的重複發生週期分布越廣。本研究的統計結果將有助於研究合唱波與電子之間交互作用的模擬。
摘要(英) Whistler-mode chorus waves most likely occur in the dayside, dawnside, and nightside sectors of the inner magnetosphere owing to the co-location of the drift trajectories of energetic electrons. When the chorus waves are excited by electron anisotropy in the minimum magnetic field region, they propagate along the field lines, possibly interacting with charged particles under some resonance conditions. The most noticeable property of chorus waves is discrete elements. The repetition period of chorus waves is defined as the generation time delay between two consecutive discrete chorus elements. Here we utilize in situ high-resolution magnetic fields from the THEMIS mission to obtain distributions of the repetition period of chorus elements for various local time sectors. These distributions have a peak at lower repetition periods and a long tail at higher repetition periods. We find that the average repetition periods for the dawnside (3 < MLT < 9) and the nightside (21 < MLT < 3) sectors are 0.54 and 0.56 s, respectively. The repetition periods for the dayside (9 < MLT<15) and the duskside (15 < MLT < 21) sectors are about two times of those for the dawnside and nightside sectors. Temperature might be the factor that affect the variability range of repetition period. The variability range of repetition period is wider when the resonating electrons have lower temperature. The distributions derived from this study are important to a modeling of wave-particle interactions for radiation belt electrons.
關鍵字(中) ★ 合唱波
★ 重複發生週期
★ 內磁層
關鍵字(英) ★ Chorus waves
★ Repetition period
★ Inner magnetosphere
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 VIII
符號說明 IX
一、 緒論 1
1-1 簡介 1
1-2 研究動機 1
1-3 論文架構 2
二、 合唱波理論背景介紹 4
2-1 地球磁層介紹 4
2-2 內磁層及范艾倫輻射帶 7
2-3 哨聲模合唱波Whistler-mode Chorus Wave 12
2-4 過去的研究 16
三、 資料分析 21
3-1 資料介紹 21
3-1-1 西蜜斯衛星 21
3-1-2 西蜜斯科學儀器介紹 23
3-1-3 SYM-H 指數 25
3-1-4 AE 指數 26
3-2 資料處理方法 28
3-2-1 短時距傅立葉轉換 28
3-3 資料分析步驟 31
3-3-1 挑選低頻帶升調合唱波事件 31
3-3-2 判定合唱波重複發生週期 35
四、 資料分析結果與討論 37
4-1 合唱波事件分布 37
4-1-1 合唱波事件位置分布 37
4-1-2 合唱波事件地磁擾動指數分布 39
4-2 合唱波重複發生週期統計 41
4-2-1 所有事件統計 41
4-2-2 區域事件統計 44
4-2-3 正規化重複發生週期統計 47
4-3 重複發生週期與背景參數比較 49
4-3-1 分區域比較各項參數 49
五、 結論及未來展望 53
5-1 結論 53
5-2 未來展望 53
參考文獻 55
附錄一 GSM座標系統 58
附錄二 SM座標系統 59
附錄三 Whistler-mode wave頻散關係式推導 60
參考文獻 Auster, H.U., K. H. Glassmeier, W. Magnes, O. Aydogar, D. Constantinescu, D. Fischer, K. H. Fornacon, E. Georgescu, P. Harvey, O. Hillenmaier, R. Kroth, M. Ludlam, Y.Narita, K. Okrafka, F. Plaschke, I. Richter, H. Schwarzi, B. Stoll, A. Valavanoglu, and M. Wiedemann, (2008). The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235-264, doi:10.1007/s11214-008-9365-9.
Bonnell, J., F. Mozer, G. Delory, A. Hull, R. Ergun, C. Cully, V. Angelopoulos, and P. Harvey (2008), The Electric Field Instrument (EFI) for THEMIS, Space Sci. Rev., 141(1-4), 303–341, doi:10.1007/s11214-008-9469-2.
Bortnik, J., R. M. Thorne, and N. P. Meredith (2008), The unexpected origin of plasmaspheric hiss from discrete chorus emissions, Nature, 452(7183), 62-66.
Burtis, W., and R. Helliwell (1969), Banded chorus—A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3, J. Geophys. Res., 74(11), 3002-3010.
Iyemori, T., M. Takeda, M. Nose, Y. Odagi and H. Toh, M. (2009), Mid-latitude Geomagnetic Indices ASY and SYM (Provisional) No. 20, WDC for Geomagnetism, Kyoto.
Kennel, C. F., and H. Petschek (1966), Limit on stably trapped particle fluxes, J. Geophys. Res., 71(1), 1–28., doi:10.1029/JZ071i001p00001.
Keika, K., M. Spasojevic, W. Li, J. Bortnik, Y. Miyoshi, and V. Angelopoulos (2012), PENGUIn/AGO and THEMIS conjugate observations of whistler mode chorus waves in the dayside uniform zone under steady solar wind and quiet geomagnetic conditions, J. Geophys. Res., 117, A07212, doi:10.1029/2012JA017708.
Kivelson, M.G., and Russell, C.T. (1995), Introduction to Space Physics, Cambridge University Press, New York.
Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, and W. Magnes (2009), Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res. Lett., 36, L09104, doi:10.1029/2009GL037595.
Li, W., R. M. Thorne, J. Bortnik, Y. Nishimura, and V. Angelopoulos (2011a), Modulation of whistler mode chorus waves: 1. Role of compressional Pc4–5 pulsations, J. Geophys. Res., 116, A06205, doi:10.1029/2010JA016312.
Li, W., J. Bortnik, R. M. Thorne, Y. Nishimura, V. Angelopoulos, and L. Chen (2011b), Modulation of whistler modechorus waves: 2. Role of density variations, J. Geophys. Res., 116, A06206, doi:10.1029/2010JA016313.
Li, W., R. M. Thorne, J. Bortnik, Y. Y. Shprits, Y. Nishimura, V. Angelopoulos, C. Chaston, O. Le Contel, and J. W.Bonnell (2011c), Typical properties of rising and fallingtone chorus waves, Geophys. Res. Lett., 38, L14103, doi:10.1029/2011GL047925.
McFadden, J.P., C.W. Carlson, D. Larson, V. Angelopoulos., M. Ludlam, R. Abiad, B. Elliott, P. Turin, and M. Marckwordt (2008), The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 141, 277–302, doi:10.1007/s11214-008-9440-2.
Omura, Y., and D. Summers (2006), Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600.
Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622.
Omura, Y., M. Hikishima, Y. Katoh, D. Summers, and S. Yagitani (2009), Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere, J. Geophys. Res., 114, A07217, doi:10.1029/2009JA014206.
Roux, A., O. Le Contel, C. Coillot, A. Bouabdellah, B. De La Porte, D. Alison, S. Ruocco, and M.-C. Vassal (2008), The search coil magentometer for THEMIS, Space Sci. Rev., 141, 265–275, doi:10.1007/s11214-008-9455-8.
Russell, C.T. and J. G. Luhmann (1997), Earth: magnetic field and magnetosphere, in Encyclopedia of Planetary Sciences, pp. 208–211, Chapman and Hall, New York
Santolik, O., Gurnett, D. A., and Pickett, J. S.: Spatio-temporal structure of storm time chorus, J. Geophys. Res., 108, 1278, doi:10.1029/2002JA009791, 2003.
Sazhin, S. S., and M. Hayakawa (1992), Magnetospheric chorus emissions: A review, Planet. Space Sci., 40(5), 681–697.
Tao, X., W. Li, J. Bortnik, R. M. Thorne, and V. Angelopoulos (2012), Comparison between theory and observation of the frequency sweep rates of equatorial rising tone chorus, Geophys. Res. Lett., 39, L08106, doi:10.1029/2012GL051413.
Thorne, R. M., B. Ni, X. Tao, R. B. Horne, and N. P. Meredith (2010), Scattering by chorus waves as the dominant cause of diffuse auroral precipitation, Nature, 467(7318), 943–946.
Thorne, R. M (2010), Radiation belt dynamics: The importance of wave‐particle interactions, Geophys. Res. Lett., 37, L22107, doi:10.1029/2010GL044990.
Trakhtengerts, V. Y. (1999), A generation mechanism for chorus emission, Ann. Geophys., 17, 95–100.
Trakhtengerts, V. Y., A. G. Demekhov, E. E. Titova, B. V. Kozelov, O. Santolik, D. Gurnett, and M. Parrot (2004), Interpretation of Cluster data on chorus emissions using the backward wave oscillator model, Phys. Plasmas, 11(4), 1345–1351.
指導教授 許志浤(Jih-Hong Shue) 審核日期 2013-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明