博碩士論文 100623023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.227.157.163
姓名 劉晉銘(Chin-Min Liu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 土星環鄰近地區之帶電塵埃粒子動力學
(Dynamics of Charged Dust Grains in the Vicinity of the Saturnian Rings)
相關論文
★ 日冕拋射物質現象在太陽第23週期之統計研究★ 土星環粒子隨時間變化之表面溫度模擬
★ RHESSI觀測M型太陽閃焰的動態結構分析★ 太陽活動寧靜期日冕層影像與解析磁場模型之影像套疊與應用
★ 土衛八Iapetus的外球層模型★ 月球表面反射太陽風質子之粒子模擬
★ 土衛六-泰坦的大氣層密度和溫度的三維分佈★ 日冕物質拋射速度與緯度和太陽活動週期的關係
★ 隨季節變化之灶神星冰極模擬★ 藉由卡西尼太空船MIMI/LEMMS觀測資料分析土星高能電漿入射來源之統計
★ 直接模擬蒙地卡羅法於彗星之噴氣和塵埃噴流之應用★ 克普勒任務觀測G型星超級閃焰的資料分析
★ The Measurements of the Gas Density Distributions and Composition in the Water Plumes of Enceladus by the INMS Instrument on Cassini★ 木星環系統帶電粒子動力學分析與 全球碰撞分布地圖--為JUNO任務預測
★ 土衛六泰坦大氣的甲烷在土星系統的分佈★ 冥王星與其它矮行星的大氣季節性演化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我的論文研究主要目標在於探討及研究土星環鄰近地區之中帶著大範圍Q/m值的帶電塵埃粒子之運動軌道的演化及其物理意涵,並且藉由帶電塵埃粒子的軌道運動,其數量密度分佈亦可透過數值模擬得之。在此次的研究之中,我使用了4 階Runge-Kutta法來模擬帶電塵埃粒子之運動軌道以及使用上述之方法加上來自於Monte Carlo法的相關概念來模擬帶電塵埃粒子之數量密度分佈,並且在所有的運動軌道之中,帶電塵埃粒子的電荷值都固定不變,並且我也計算帶電塵埃粒子受到shadow effect影響之下的運動軌道及其數量密度分佈,因受到shadow effect的影響,帶電塵埃粒子之電性將會有所變化而非固定不變。根據模擬的結果顯示,當帶電塵埃粒子的Q/m≥10^-4 e/mP且出發點在穩定臨界半徑(rc=1.53 RS)內則他們將會透過虹吸式流動撞擊到土星的上層大氣,此外,土星赤道電離層減損效應也有可能是因為帶有Q/m=10^-6–10^-7 e/mP的帶電塵埃粒子入射到土星赤道上層大氣因而造成,其現象亦被Cassini太空船觀測到。假如帶電塵埃粒子受到shadow effect的影響,其運動軌道將會和單純只帶有正電荷或是負電荷之帶電塵埃粒子有很大的不同。從帶電塵埃粒子在Encke Gap內的運動軌道計算之中,我們可以瞭解到Q/m和角速度之間的關係,其可以提供軌道穩定性的相關資訊。然而,因為目前尚未有靠近土星環鄰近地區的現地量測,因此這份研究將可以提供在未來觀測時所需之模型基礎,並且亦可以解釋在土星上層大氣及土星環系統所觀測到的現象,此外,亦可解釋土星環和土星彼此之間的交互作用。
摘要(英) The objective of my thesis research aims to study the evolution and physical implications of the orbital motion of charged dust grains with different charge-to-mass ratios (Q/m) in the vicinity of the Saturnian rings. By the way,
the number density distributions of charged dust grains with different Q/m could also be acquired via numerical simulations. In this research, I used the Runge-Kutta 4th order method and which with some concepts from the Monte
Carlo method to calculate the trajectories and number densities of the charged dust grains, respectively. The charge was fixed for all the orbital motion. However, I also tested the trajectories and number densities of charged dust
grains affected by the shadow effect, and the charge properties of charged dust grains would be different instead of fixed. According to the results, when Q/m≥10^-4 e/mP, charged dust grains would precipitate into the upper atmosphere of Saturn via siphon flow if the injected positions of which were smaller than the stability critical radius (rc=1.53 RS). Besides, perhaps the ionosphere depletion of Saturnian equator was due to the injection of charged dust grains which with Q/m between 10^-6–10^-7 e/mP, and this phenomenon was observed via the Cassini radio occultation measurements. Furthermore, if charged dust grains did the orbital motion with the shadow effect, then something was different from purely positively or negatively charged dust grains did. The trajectories of charged dust
grains within the Encke Gap could provide the information about the orbital stability via the relation between Q/m and angular velocity. However, there has not been in-situ observation near the ring plane until now, so this research work not only provides the cornerstone for the future observational model but also interprets some phenomena which happened to the upper atmosphere of Saturn, Saturnian ring system, and the interaction between Saturnian ring system and Saturn.
關鍵字(中) ★ 土星
★ 土星環
★ 磁場
★ 帶電塵埃粒子
★ 倫吉-庫塔法
★ 蒙地卡羅法
關鍵字(英) ★ Saturn
★ Saturnian rings
★ magnetic field
★ charged dust grains
★ Runge-Kutta method
★ Monte Carlo method
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables xvi
Chapter 1 Introduction 1
1.1 Saturn and Its Ring System 1
1.1.1 Saturn 1
1.1.2 Saturnian Ring System 12
1.1.3 Charged Dust Grains in Saturnian Ring System 18
1.2 Research Goals 18
1.3 Cassini-Huygens Mission 20
1.3.1 Prime Mission 22
1.3.2 Extended Missions 23
1.3.3 The Instruments of Cassini Orbiter 24
Chapter 2 Equation of Motion and Description of the Programmes 26
2.1 Gravitational Force and Lorentz Force 26
2.1.1 Gravitational Force 26
2.1.2 Lorentz Force 27
2.2 Charged Dust Grains 30
2.2.1 The Charging of Dust Grains 30
2.2.2 The Size of Dust Grains 32
2.3 Description of the Programmes 34
2.3.1 Description of the Trajectories 34
2.3.2 Description of the Number Densities 35
2.3.3 Description of the Trajectories within the Encke Gap 41
Chapter 3 Results 43
3.1 Trajectories 43
3.1.1 Dipolar Magnetic Field 43
3.1.2 Measured Magnetic Field 47
3.1.3 Shadow Effect 52
3.2 Number Densities 63
3.2.1 Positively Charged Dust Grains 63
3.2.2 Negatively Charged Dust Grains 71
3.2.3 Shadow Effect 80
3.3 The Trajectories of Charged Dust Grains within the Encke Gap 93
Chapter 4 Discussion 98
Chapter 5 Future Work 101
Bibliography 104
參考文獻 Atreya, S. K., and A.-S. Wong (2005), Coupled clouds and chemistry of the giant planets—A case for multiprobes, Space science reviews, 116(1-2), 121-136.
Carlson, R. (1980), Photo-sputtering of ice and hydrogen around Saturn’s rings.
Connerney, J. E. P., and J. H. Waite (1984), New model of Saturn’s ionosphere with an influx of water from the rings, Nature, 312(5990), 136-138.
Courtin, R., D. Gautier, A. Marten, B. Bézard, and R. Hanel (1984), The composition of Saturn’s atmosphere at northern temperate latitudes from Voyager IRIS spectra-NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio, The Astrophysical Journal, 287, 899-916.
De Pater, I., and J. J. Lissauer (2010), Planetary sciences, Cambridge University Press.
Dougherty, M., N. Achilleos, N. Andre, C. Arridge, A. Balogh, C. Bertucci, M. Burton, S. Cowley, G. Erdos, and G. Giampieri (2005), Cassini magnetometer observations during Saturn orbit insertion, Science, 307(5713), 1266-1270.
Esposito, L. W., J. E. Colwell, K. Larsen, W. E. McClintock, A. I. F. Stewart, J. T. Hallett, D. E. Shemansky, J. M. Ajello, C. J. Hansen, and A. R. Hendrix (2005), Ultraviolet imaging spectroscopy shows an active Saturnian system,
Science, 307(5713), 1251-1255.
Glocer, A., T. I. Gombosi, G. Toth, K. C. Hansen, A. J. Ridley, and A. Nagy (2007), Polar wind outflow model: Saturn results, Journal of Geophysical Research: Space Physics, 112(A1), A01304.
Goertz, C. K. (1989), Dusty plasmas in the solar system, Reviews of Geophysics, 27(2), 271-292.
Hedman, M. M., J. A. Burns, D. P. Hamilton, and M. R. Showalter (2013), Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap, Icarus, 223(1), 252-276.
Hill, J. R., and D. A. Mendis (1982), The dynamical evolution of the Saturnian ring spokes, Journal of Geophysical Research: Space Physics, 87(A9), 7413-7420.
Horanyi, M., H. Houpis, and D. Mendis (1988), Charged dust in the Earth’s magnetosphere, in Plasma and the Universe, edited, pp. 215-229, Springer.
Howard, J., M. Horányi, and G. Stewart (1999), Global dynamics of charged dust particles in planetary magnetospheres, Physical Review Letters, 83(20), 3993-3996.
Howard, J., H. R. Dullin, and M. Horányi (2000), Stability of halo orbits, Physical review letters, 84(15), 3244-3247.
Ip, W. H. (1983), On plasma transport in the vicinity of the rings of Saturn: A Siphon Flow Mechanism, Journal of Geophysical Research: Space Physics, 88(A2), 819-822.
Ip, W. H. (1984), On the equatorial confinement of thermal plasma generated in the vicinity of the rings of Saturn, Journal of Geophysical Research: Space Physics, 89(A1), 395-398.
Ip, W. H. (1995), The Exospheric Systems of Saturn’s Rings, Icarus, 115(2), 295-303.
Jontof-Hutter, D., and D. P. Hamilton (2012), The fate of sub-micron circumplanetary dust grains I: Aligned dipolar magnetic fields, Icarus, 218(1), 420-432.
Juhász, A., and M. Horányi (2004), Seasonal variations in Saturn’s E‐ring, Geophys. Res. Lett., 31(19).
Jurac, S., M. McGrath, R. Johnson, J. Richardson, V. Vasyliunas, and A. Eviatar (2002), Saturn: Search for a missing water source, Geophys. Res. Lett., 29(24),
25-21-25-24.
Kliore, A. J., A. F. Nagy, E. A. Marouf, A. Anabtawi, E. Barbinis, D. U. Fleischman, and D. S. Kahan (2009), Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations, Journal of Geophysical Research: Space Physics, 114(A4), A04315.
Luhmann, J. G., R. E. Johnson, R. L. Tokar, S. A. Ledvina, and T. E. Cravens (2006), A model of the ionosphere of Saturn’s rings and its implications, Icarus, 181(2), 465-474.
Mendis, D. A., H. L. F. Houpis, and J. R. Hill (1982), The
gravito-electrodynamics of charged dust in planetary magnetospheres, Journal of Geophysical Research: Space Physics, 87(A5), 3449-3455.
Mendis, D. A., J. R. Hill, and H. L. F. Houpis (1983), Charged dust in Saturn’s magnetosphere, Journal of Geophysical Research: Solid Earth, 88(S02), A929-A942.
Mitchell, C., M. Horányi, and J. Howard (2003), Accuracy of epicyclic description of dust grain orbits about Saturn, Journal of Geophysical Research: Space Physics (1978–2012), 108(A5).
Mitchell, C., M. Horanyi, O. Havnes, and C. Porco (2006), Saturn’s spokes: Lost and found, Science, 311(5767), 1587-1589.
Moore, L., and M. Mendillo (2007), Are plasma depletions in Saturn’s ionosphere a signature of time-dependent water input?, Geophys. Res. Lett., 34(12).
Moore, L., M. Mendillo, I. Müller-Wodarg, and D. Murr (2004), Modeling of global variations and ring shadowing in Saturn’s ionosphere, Icarus, 172(2), 503-520.
Moore, L., I. Mueller-Wodarg, M. Galand, A. Kliore, and M. Mendillo (2010), Latitudinal variations in Saturn’s ionosphere: Cassini measurements and model comparisons, Journal of Geophysical Research-Space Physics, 115.
Morfill, G. E., E. Grün, C. K. Goertz, and T. V. Johnson (1983), On the evolution of Saturn’s “spokes”: Theory, Icarus, 53(2), 230-235.
Moses, J. I., and S. F. Bass (2000), The effects of external material on the chemistry and structure of Saturn’s ionosphere, Journal of geophysical research, 105(E3), 7013-7052.
Nagy, A. F., et al. (2006), First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft, Journal of Geophysical Research: Space Physics, 111(A6), A06310.
Nicholson, P. D., et al. (2008), A close look at Saturn’s rings with Cassini VIMS, Icarus, 193(1), 182-212.
Northrop, T., and J. Connerney (1987), A micrometeorite erosion model and the age of Saturn’s rings, Icarus, 70(1), 124-137.
Northrop, T. G., and J. R. Hill (1982), Stability of negatively charged dust grains in Saturn’s ring plane, Journal of Geophysical Research: Space Physics, 87(A8),
6045-6051.
Northrop, T. G., and J. R. Hill (1983), The inner edge of Saturn’s B ring, Journal of Geophysical Research: Space Physics, 88(A8), 6102-6108.
Porco, C., and G. Danielson (1982), The periodic variation of spokes in Saturn’s rings, The Astronomical Journal, 87, 826-833.
Porco, C., E. Baker, J. Barbara, K. Beurle, A. Brahic, J. Burns, S. Charnoz, N. Cooper, D. Dawson, and A. Del Genio (2005), Cassini imaging science: Initial results on Saturn’s rings and small satellites, Science, 307(5713), 1226-1236.
Pospieszalska, M. K., and R. E. Johnson (1991), Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian plasma torus, Icarus, 93(1), 45-52.
Richardson, J. D. (1995), AN EXTENDED PLASMA MODEL FOR SATURN, Geophys. Res. Lett., 22(10), 1177-1180.
Seal, D., and B. Buffington (2009), The Cassini Extended Mission, in Saturn from Cassini-Huygens, edited by M. Dougherty, L. Esposito and S. Krimigis, pp. 725-744, Springer Netherlands.
Thomsen, M. F., and J. A. Van Allen (1980), Motion of trapped electrons and protons in Saturn’s inner magnetosphere, Journal of Geophysical Research: Space Physics, 85(A11), 5831-5834.
Tokar, R. L., et al. (2005), Cassini observations of the thermal plasma in the vicinity of Saturn’s main rings and the F and G rings, Geophys. Res. Lett., 32(14).
Tseng, W. L., W. H. Ip, R. E. Johnson, T. A. Cassidy, and M. K. Elrod (2010), The structure and time variability of the ring atmosphere and ionosphere, Icarus, 206(2), 382-389.
Waite, J., and T. E. Cravens (1987), Current review of the Jupiter, Saturn, and Uranus ionospheres, Advances in space research, 7(12), 119-134.
Whipple, E. C. (1981), Potentials of surfaces in space, Reports on Progress in Physics, 44(11), 1197.
Zebker, H. A., E. A. Marouf, and G. Leonard Tyler (1985), Saturn’s rings: Particle size distributions for thin layer models, Icarus, 64(3), 531-548.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明