博碩士論文 100624007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.204.2.190
姓名 張俊翔(Jyun-Siang Jhang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 高雄平原地區抽水引致汙染潛勢評估
(Assessment of groundwater vulnerability induced by pumping events in Kaohsiung plain area)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 利用自然電位法監測淺層土壤入滲歷程
★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究★ 臺灣西部沿海海水入侵與地下水排出模擬分析
★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析
★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為★ 三維離散裂隙網路水流與溶質傳輸模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來地下水質監測資料顯示,高雄平原地區之總溶解固體物和砷離子濃度是超出飲用水法規標準。本研究藉由DRASTIC模式建立高雄平原汙染潛勢分佈圖,透過層級分析法(Analytic hierarchy process, AHP)修正DRASTIC中的參數權重,藉此達到更高的預測準確率;在考慮未來氣候條件變異的影響下,假設部分自來水廠將大量抽用地下水,本研究利用MODFLOW地下水流模式,模擬大規模抽用地下水的情況下,汙染潛勢變異情形。由DRASTIC模式分析結果顯示:中高-高潛勢(140 DI 180)多集中於東部的大寮、大樹與林園區域;低-中汙染潛勢(102 DI 120)則集中於近山區部分的田寮、旗山與美濃區。根據層級分析法模式的結果顯示,相關性由原先23%提升至72.5%,效果相當顯著。以AHP的權重修正模式為基礎下,發現大社、仁武與林園區因抽水,平均水位下降約3公尺,材質的判釋上均屬於較細質顆粒材質使得潛勢有降低的現象;大樹區則在材質判釋上隸屬粗顆粒材質,使得該區潛勢提升。本研究由各觀測井位置附近加入抽水井模擬,高潛勢分佈則由東部轉移至西南部區域,其高潛勢上升8%。故地下水的抽用,對於整體潛勢有著一定的重要程度的影響。
摘要(英) Recent groundwater quality monitoring data show that the total dissolved solids and arsenic ions concentrations in many of Kaohsiung plain areas are higher than that of drinking water standards. This study uses DRASTIC model to create groundwater vulnerability maps for the Kaohsiung plain area. The analytic hierarchy process (AHP) was employed to modify the DRASTIC weightings to improve the prediction accuracy of the DRASTIC model. Based on the modified DRASTIC model this study then uses MODFLOW model to evaluate the groundwater vulnerability induced by pumping events. The DRASTIC model results show that the medium high to high groundwater vulnerability (140 ≤ DI ≤ 180) areas for Kaohsiung plain are Daliao, Dashu, and Lin Yuan districts. The low to medium groundwater vulnerability (102 ≤ DI ≤ 120) areas are near Tianliao, Qishan and Mino districts. The AHP modified model results show that the correlation of vulnerability maps are improved significantly from 23% to 72.5%. The results of MODFLOW model show that the large pumping rates will lead to 3 m drawdown in average near the Tashe, Ren Wu, Lin Yuan, and Dashu districts. However, the different aquifer materials in these areas will either decrease (Tashe, Ren Wu, and Lin Yuan districts) or increase (Dashu district) the groundwater vulnerability. The average increase of groundwater vulnerability in the Kaohsiung area is about 8% and the high vulnerability areas are mainly located in southwest regions in the Kaohsiung plain.
關鍵字(中) ★ DRASTIC
★ 地下水汙染潛勢
★ 層級分析法
★ 地下水流模MODFLOW
★ 抽水
關鍵字(英) ★ DRASTIC
★ Groundwater vulnerability
★ Analytic hierarchy process
★ Groundwater simulate model MODFLOW
★ Pumping
論文目次 目錄
摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 X
表目錄 XIII
符號說明 XVI
第一章 緒論 1
1.1研究背景 1
1.2文獻回顧 4
1.2.1 各潛勢評估方法適用性 13
1.2.2 DRASTIC台灣應用案例 14
1.2.3 DRASTIC適用與拘限性 15
1.3研究動機與目的 17
1.4研究流程 18
1.5 論文架構 21
第二章 研究區域介紹 22
2.1地理位置 22
2.2研究地區水質現況 23
2.3區域地質 29
2.4地形特徵與河川水系 31
2.5氣候條件 37
2.6土地利用型態 39
第三章 理論與方法 42
3.1 DRASTIC模式 42
3.2地下水流模式 53
3.2.1 MODFLOW水文地質概念模式 57
3.2.2水文地質參數設定 58
3.2.3 模式率定 61
3.3層級分析法(ANALYTIC HIERARCHY PROCESS) 64
第四章 結果與討論 71
4.1 DRASTIC汙染潛勢評估 71
4.1.1地下水位深度(D) 74
4.1.2淨補注量(R) 77
4.1.3含水層介質(A) 79
4.1.4土壤介質(S) 82
4.1.5地形坡度(T) 85
4.1.6通氣層介質影響(I) 88
4.1.7水力傳導係數(C) 91
4.2 DRASTIC與現況監測汙染物 95
4.2.1層級分析法權重修正 97
4.3 地下水位之影響 104
4.4.3地下水抽水地區 107
4.5 DRASTIC潛勢變化 110
4.6 綜合討論 117
第五章 結論與建議 119
5.1 結論 119
5.2 建議 120
參考文獻 122
參考文獻 [1] U.S. EPA (Environmental Protection Agency), DRASTIC: a Standard System for Evaluating Groundwater Potential Using Hydrogeological Settings, Ada, Oklahoma WA/EPA Series 163, 1985
[2] Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., Hackett, G., DRASTIC: a Standardized System for Evaluating Ground Water Pollution Potential using Hydrogeologic Settings, Washington(USA), 1987
[3] Babiker, I.S., Mohamed, A.A.M., Terao, H., Kato, K., “A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan”, Science of the Total Environment, 345(1-3), pp.127-140, 2005
[4] Panagopoulos, G. P., Antonakos, A. K. and Lambrakis, N. J., “Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS”, Journal of Hydrogeology, 14(6), pp. 894-911, 2006
[5] Antonakos, A.K., Lambrakis, N.J., “Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece”, Journal of Hydrology, 333, pp. 288-304, 2007
[6] Evans, B.M., Myers, W.L., “A CIS-based approach to evaluating regional groundwater pollution potential with DRASTIC”, Journal of Soil and Water Conservation, pp. 242-245, 1990
[7] Fritch, T.G., McKnight, C.L., Yelderman, J.C., Arnold, J.G., “An aquifer vulnerability assessment of the Paluxy aquifer, Central Texas, USA, using GIS and a modified DRASTIC approach”, Environmental Management, 25, pp. 337-345, 2000
[8] Lobo-Ferreira, J.P., Oliveira, M.M., “DRASTIC ground water vulnerability mapping of Portugal”, In: Proceedings from the 27th Congress of the International Association for Hydraulic Research, pp. 132-137. 1997
[9] Lynch, S.D., Reynders, A.G., Schulze, R.E., “A DRASTIC approach to ground water vulnerability in South Africa”, South African Journal of Science, 93(2), pp. 59-60, 1997
[10] Melloul, M., Collin, M., “A proposed index for aquifer waterquality assessment: the case of Israel’s Sharon region”, Journal of Environmental Management, 54(2), pp. 131-142, 1998
[11] Johansson, P.O., Scharp, C., Alveteg, T., Choza, A., “Framework for ground-water protection-the Managua Ground Water System as an example”, Ground Water, 37(2), pp. 204-213. 1999
[12] Kim, Y.J., Hamm, S., “Assessment of the potential for ground water contamination using the DRASTIC/ EGIS technique, Cheongju area, South Korea”, Hydrogeology journal, 7(2), pp. 227-235, 1999
[13] Zabet, T.A., “Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method”, Environmental Geology, 43, pp. 203-208, 2002
[14] Garrett, P., Williams, J.S., Rossoll, C.F., Tolman, A.L., “Are ground water vulnerability classification systems workable”, National Water Well Association, pp. 329-343, 1989
[15] Merchant, J., “GIS-Based Groundwater Pollution Hazard Assessment: a Critical Review of the DRASTIC Model”, Photogrammetric engineering and remote sensing(USA), 60(9), pp. 1117-1127, 1994
[16] Rosen, L., “A study of the DRASTIC methodology with emphasis on Swedish conditions”, Ground Water, 32, pp. 278-285, 1994
[17] McLay, C.D.A., Dragden, R., Sparling, G., Selvarajah, N., “Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches”, Environmental Pollution, 115, pp. 191-204, 2001
[18] Rupert, M.G., Improvements to the DRASTIC Groundwater Vulnerability Mapping Method, U.S. Geological Survey Fact Sheet FS-066-99,Reston(USA), 1999
[19] Secunda, S., Collin, M.L., Melloul, A.J., “Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region”, Journal of Environmental Management, 54, pp. 39-57, 1998
[20] Foster, S.S.D., “Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy”, Hydrological Research, 38, pp.69-86, 1987
[21] Thapinta, A. ,Hudak, P. F., “Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand”, Environment International, 29, pp. 87-93, 2003
[22] Zektser, I. S., “Groundwater and the Environment-Application for the Global Community”, Lewis Publishers, pp.103-114, 2000
[23] Forster, S. S., Hirata, R., “Groundwater pollution risk assessment: a methodology using available data”, WHO-PAHO/HPE-CEPIS Technical Manual. Lima, per’u, pp.78, 1988
[24] Vrba, J., Zoporozec, A., “Guidebook on mapping groundwater vulnerability”,
International Contribution for Hydrogeology, vol. 16. Hannover7 Heise. pp. 131, 1994
[25] Van, S. D., Ewert, L., Wassenaar, L., “Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping”, Canadian Water Resources Journal 18, pp.25-37, 1992
[26] Awawdeh, M., Nawafleh, A., “A GIS-based EPIK Model for Assessing Aquifer Vulnerability in Irbid Governorate, North Jordan”, Jordan Journal of Civil Engineering, Volume 2, No. 3, 2008
[27] Civita, M., Maio, M.D., “Karstic aquifer vulnerability assessment methods and results at a test site”, inquinamento Methodologia and Automatizzazione, Pitagora Editric, Bologna, Vol.60, 1997
[28] Dzhamalov, R.G., Zekster, I.S., “Principles of Groundwater Protection (Russian Expirence), Lewis Publishers, pp.103-114
[29] Baalousha, H., “ Vulnerability assessment for the Gaza Strip,Palestine using DRASTIC”, Environ Geol, pp.405-414, 2006
[30] Kachi, S., Kherici, N., Kachi, N., “ Vulnerability and Pollution Risks in the Alluvial Aquifer of Tebessa-Morsott”, American Journal of Environmental Sciences 3(4), pp.219-224, 2007
[31] Vi ´ as, J.M., Andreo, B., Perles, M. J., Carrasco, F., “ A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions”, Environ Geol 47, pp. 586–595, 2005
[32] Salemi, E., Mastrocicco, M., Colombani, N., Aschonitis, V.G., “ Comparison of Three Different Methods for Groundwater Intrinsic Vulnerability Mapping in the Ferrara Province, Italy”, Republic of Macedonia, 2012
[33] Doerfliger, N., Jeannin, P.J., Zwahlen, F., “ Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method)”, Environmental Geology 39 (2), 1999
[34] Tovar, M., Rodríguez, R., “Vulnerability assessment of aquifers in an urban-rural environment and territorial ordering in León, Mexico”, Geofísica Internacional, pp. 603-609, 2009
[35] McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference groundwater flow model. US Geology Survey Technology Water Resource. 34, 586.
[36] Zheng, C., “MT3D Manual”, 1991
[37] Barbash, J.E.; Resek, E.A., Pesticides in Ground water: Distribution, Trends, and Governing Factors, Ann Arbor Press, Michigan (USA), 1996
[38] Thapinta, A. ,Hudak, P. F., “Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand”, Environment International, 29, pp. 87-93, 2003
[39] Dickerson, J.R., “A modified DRASTIC model for siting confined animal feeding operations (CAFOs) in WILLIAMS COUNTY, OHIO”, MASTER OF SCIENCE, 2007
[40] Panagopoulos, G. P., Antonakos, A.K., Lambrakis, N.J., “ Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS”, Hydrogeology Journal, 14, pp. 894–911, 2006
[41] Thomas,L.S., “Decision making with the analytic hierarchy process”, 1971
[42] 張良正,臺灣地區地下水觀測網水質調查分析及指標井選定研究計畫,經濟部水資源局, 1999
[43] 洪瑛鈞,金門地區地下水汙染潛勢分析, 國立交通大學土木工程系, 碩士論文, 2002
[44] 甘東富,整合DRASTIC 模式及區域性地下水水質監測井網監測頻率之初步研究, 國立屏東科技大學土木工程系, 碩士論文, 2002
[45] 劉振宇,金門地區進行地下水水質、水量之監測與安全出水量計算及汙染潛勢評估計畫, 經濟部水資源局, 2004
[46] 吳銘志,臺灣地區地下水文圖圖集繪製工作(2/4)期末報告, 經濟部水利署, 2004
[47] 黃緒瑩,高雄平原地區地下水汙染潛勢之研究, 國立成功大學地球科學研究所, 碩士論文, 2006
[48] 方政順,嘉南平原地區地下水汙染潛勢之研究, 國立成功大學地球科學研究所, 碩士論文, 2009
[49] 林建文,濁水溪沖積扇地下水硝酸鹽氮汙染潛勢評估與預測模式建立之研究,國立中央大學應用地質研究所,碩士論文, 2009
[50] 經濟部水利署水文水資源資料管理供應系統網站,
http://gweb.wra.gov.tw/wrweb/
[51] 交通部中央氣象局網站, http://www.cwb.gov.tw/V6/index.htm
[52] 經濟部中央地質調查所網站, http://hydro.moeacgs.gov.tw/
[53] 高雄縣環境保護現況分析
[54] 行政院二仁溪再生願景整治管理系統,
http://ivy1.epa.gov.tw/runlet/env/env324.asp
[55] 高雄市政府環境保護局,
http://www.ksepb.gov.tw/WebSite/Organ?LinkID=327
[56] 楊庭雅,關渡平原地下水流動模擬,國立中央大學應用地質研究所,碩士論文, 2011
[57] 陸挽中, 賴慈華, 陳瑞娥, 林燕初, 黃智昭, 費立沅, 台南高雄地區地下水文地質概況, 資源工程研討會論文集, 2005
[58] 行政院環境保護署土壤及地下水整治基金管理會,
http://sgw.epa.gov.tw/public/00_SGW.asp
[59] 經濟部國土資訊系統自然整合供應倉儲系統,
http://ngis.moea.gov.tw/ngisfxweb/Default.aspx
[60] 中央氣象局南區氣象站,
http://south.cwb.gov.tw/Obs/frindex.htm
[61] 高雄淨水廠現況,
http://depweb.ksepb.gov.tw/2/drinkingwater/management_4.htm
[62] 行政院環保署, http://www.epa.gov.tw/
[63] 行政院環保署飲用水質標準,
http://dws.epa.gov.tw/law/law04.htm
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2013-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明