博碩士論文 100684002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.135.185.194
姓名 楊哲銘(Che-Ming Yang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 速度相依摩擦律應用於遽變式平面破壞與增積岩楔
(Applications of velocity-dependent friction law on catastrophic plane failure and accretionary wedge)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摩擦係數為斷層帶和山崩滑動面中重要之力學特性,其控制著斷層之剪動行為也決定山崩的運動過程,然而,摩擦係數與行為受到剪動速度、位移、正向應力、水、溫度、礦物組成、粒徑大小與剪切構造發育程度等影響。藉由低至高速旋剪設備進行不同速度之長位移旋剪實驗,將實驗結果建立速度相依摩擦律,便可計算摩擦係數於不同的滑移速度與累積位移之變化,若考慮其他不同實驗條件進行量測與分析,便可將其納入摩擦律中評估所造成之影響,並描述該材料所組成滑動面於滑動不同階段時之剪切強度。本論文將介紹引入速度位移相依摩擦律之Newmark 位移法來計算地震誘發山崩塊體之運動過程,以集集地震誘發之草嶺山崩為例,成功地再現草嶺山崩啟動、加速、撞擊與停止之運動歷程;另一方面,在非線性臨界楔模型中,透過地表調查與地層剖面分析,推估臨界楔之強度,再利用斷層泥於不同速度(長位移)進行旋剪摩擦實驗,建立大範圍速度與摩擦係數關係,評估適當之基底滑脫面摩擦係數。本論文證明速度位移相依摩擦律不僅可應用於地震誘發之高速山崩,亦可應用於大地構造空間與時間尺度之模型中。
摘要(英) The friction coefficient of a fault gouge or sliding plane dominates the fault dynamics and kinematics of a landslide. However, the friction coefficient and behavior of fault gouges or sliding planes are influenced by the slip rate, displacement, normal stress, pore pressure, water content, temperature, mineral content, particle size, and shear structure. We performed a series of rotary shear tests under different experimental conditions from low to high velocity to establish the velocity-dependent friction law. Accordingly, the friction coefficient can be evaluated by varying the slip rate and accumulated slip displacement. This study presents two applications of the velocity-dependent friction law, a kinematic analysis of catastrophic planar failure and an estimation of the strength of the detachment fault of the accretionary wedge. The first target is the famous planar failure of Tsaoling landslide, Taiwan, which was triggered by the 1999 Chi-Chi earthquake. We adopted Newmark displacement analysis with velocity-displacement dependent friction law to reproduce the kinematic history of the Tsaoling landslide, considering the phases of initiation, acceleration, collision, and deposition. For the second application, we present a modified critical taper model with nonlinear Hoek-Brown failure criterion and utilize field investigations and laboratory tests to estimate the wedge strength in western central Taiwan. The slip velocity dependent friction coefficient of the detachment fault can be obtained via a series of rotary shear tests with a wide slip rate range. Consequently, the rotary shear test and velocity-dependent friction law can be applied successfully to quantify the kinematics of the catastrophic landslide and the critical taper angle of accretionary wedge, even as their temporal and spatial scales are extremely different.
關鍵字(中) ★ 旋剪摩擦實驗
★ 速度位移相依摩擦律
★ Newmark位移法
★ 草嶺山崩
★ 臨界楔模型
★ Hoek-Brown破壞準則
★ 基底滑脫斷層
關鍵字(英) ★ Rotary-shear friction experiment
★ velocity-dependent friction law
★ Newmark displacement method
★ Tsaoling landslide
★ critical taper model
★ Hoek-Brown failure criterion
★ basal detachment fault
論文目次 Table of contents
摘要 i
Abstract ii
誌謝辭 iii
Table of contents iv
List of figures vii
List of tables xiii
Introduction and overview 1
1. Initiation, movement, and run-out of the giant Tsaoling landslide – What can we learn from a simple rigid block model and a velocity-displacement dependent friction law? 6
Abstract 6
1.1 Introduction 7
1.2 1999 Tsaoling landslide event 11
1.2.1 Geological background 11
1.2.2 Topography and motion of the Tsaoling landslide 13
1.3 Friction experiments on bedding-parallel fault gouge – Low- to high-velocity rotary-shear tests 17
1.3.1 A low- to high-velocity rotary-shear friction apparatus 17
1.3.2 Experimental procedures 20
1.3.3 Experimental results on bedding-parallel fault gouge 21
1.3.4 Microstructural observations 27
1.4 Compilation of existing friction data from the Tsaoling landslide materials 32
1.4.1 Friction behaviors of shale and fault gouge under dry and wet conditions 32
1.4.2 Velocity-dependence of the slip weakening parameters 34
1.5 Initiation and kinematics of the Tsaoling landslide based on a rigid block model that incorporate a velocity-displacement dependent friction law 37
1.6.1 Newmark displacement method 37
1.6.2 Rigid block modeling of the Tsaoling landslide with semi-fault gouge parameters 40
1.6.3 Rigid block modeling with existing friction data of shale and fault gouge 44
1.6 Discussion 47
1.6.1 Newmark analysis of the Tsaoling landslide 47
1.6.2 Friction constitutive law and importance of water 50
1.6.3 Microstructures of deformed gouge 56
1.6.4 Energy budget of the Tsaoling landslide 58
1.7 Conclusions 59
Acknowledgements 61
2. Non-linear critical taper model - determination of accretionary wedge strength and inferring the basal-detachment strength 62
Abstract 62
2.1 Introduction 63
2.2 Non-linear Hoek-Brown (HB) failure criterion 66
2.3 Proposed critical taper model incorporating the non-linear HB failure criterion (Critical Hoek-Brown Wedge, CHBW) 72
2.4 Determination of wedge strength using the CHBW model in western central Taiwan 76
2.4.1 Study area and geometric parameters 76
2.4.2 Determination of values 79
2.4.3 Determination of 81
2.4.4 Determination of 83
2.4.5 Determination of the wedge strength 85
2.4.6 Validation of the proposed model to estimate the wedge strength 85
2.5 Friction coefficient of detachment – Low- to high-velocity rotary shear tests 89
2.6 Discussion 95
2.6.1 The wedge thickness dependency of CHBW and CMCW models 95
2.6.2 Sensitivity analysis of the strength parameters of HB and MC failure criteria for wedge strength and critical taper angle 99
2.6.3 Prospects advantages of the proposed CHBW model 103
2.6.4 Insights regarding the detachment strength—inter- to co-seismic slip rate dependency 105
2.7 Conclusions 110
Acknowledgments 111
References 112
參考文獻 References
Brace, W.F., Byerlee, J.D., 1966. Stick-slip as a mechanism for earthquakes. Science 153(3739), 990-992.
Brantut, N., Schubnel, A., Rouzaud, J. N., Brunet, F., Shimamoto, T., 2008. High‐velocity frictional properties of a clay‐bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research: Solid Earth 113(B10).
Byerlee, J., 1978. Friction of rocks. Pure and Applied Geophysics 116(4), 615-626.
Chen, J., Yang, X., Yao, L., Ma, S., Shimamoto, T., 2013. Frictional and transport properties of the 2008 Wenchuan earthquake fault zone: implications for coseismic slip-weakening mechanisms. Tectonophysics 603, 237-256.
Chen, J., Niemeijer, A., Yao, L., Ma, S., 2017. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters 44(5), 2177-2185.
Dieterich, J.H., 1978. Time-dependent friction and the mechanics of stick slip. Pure and Applied Geophysics 116:790–806
Di Toro, G., Goldsby, D.L., Tullis, T.E., 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427(6973), 436-439.
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311(5761), 647-649.
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature 471, 494-498.
Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., 2010. Evidences of thermal pressurization in high velocity friction experiments on smectite-rich gouges. Terra Nova 22(5), 347–353.
Goldsby, D.L., Tullis, T.E., 2002. Low frictional strength of quartz rocks at subseismic slip rates. Geophysical Research Letters 29(17).
Han, R., Shimamoto, T., Hirose, T., Ree, J.H., Ando, J., 2007. Ultralow friction of carbonate faults caused by thermal decomposition. Science 316(5826), 878–881.
Han, R., Hirose, T, Shimamoto, T., 2010. Strong velocity-weakening, powder lubrication of simulated carbonate faults at seismic slip-rates. Journal of Geophysical Research 115, B03412.
Liao, C.J., Lee, D.H., Wu, J.H., Lai, C.Z., 2011. A new ring-shear device for testing rocks under high normal stress and dynamic conditions. Engineering Geology 122, 93–105.
Hirose, T., Shimamoto, T., 2003. Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology 25(10), 1569-1574.
Hirose, T., Shimamoto, T., 2005a. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research: Solid Earth 110(B5).
Hirose, T., Shimamoto, T., 2005b. Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes. Bulletin of the Seismological Society of America 95(5), 1666-1673.
Hou, L., Ma, S., Shimamoto, T., Chen, J., Yao, L., Yang, X., Okimura, Y., 2012. Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008 Wenchuan earthquake. Earth Science 25, 197–217.
Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J.J., Lee, C.T., 2009. Dynamic weakening of bedding-parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi-Chi earthquake. The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 398–401.
Ma, S., Shimamoto, T., Yao, L., Togo, T., Kitajima, H., 2014. A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earth Science 27, 469–497.
Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letters 34(1), L01308.
Oohashi, K., Hirose, T., Shimamoto, T., 2011. Shear-induced graphitization of carbonaceous materials during seismic fault motion: experiments, possible implications for fault mechanics. Journal of Structural Geology 33(6), 1122–1134.
Ruina, A , 1983. Slip instability and state variable friction laws. Journal of Geophysical Research 88(B12), 10359-10370.
Sawai, M., Shimamoto, T., Togo, T., 2012. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. Journal of Structural Geology 38, 117–138.
Scholz, C.H., 1990. The Mechanics of Earthquake Faulting, Cambridge University Press, Cambridge, UK.
Shimamoto, T., Tsutsumi, A., 1994. A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. Journal of Tectonics Research Group Japan 39, 65-78.
Togo, T., Shimamoto, T., Ma, S., Hirose, T., 2011. High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake. Earth Science 24, 267–281
Togo, T., Shimamoto, T., 2012. Energy partition for grain crushing in quartz gouge during subseismic to seismic fault motion: an experimental study. Journal of Structural Geology 38, 139–155.
Togo, T., Shimamoto, T., Dong, J.J., Lee, C.T., Yang, C.M., 2014. Triggering and runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan Chi-Chi earthquake, as revealed by high-velocity friction experiments. Geophysical Research Letters 41(6), 1907–1915.
Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal-Geological Society of Japan 102, 240-248.
Tsutsumi, A., Shimamoto, T., 1997. High‐velocity frictional properties of gabbro. Geophysical Research Letters 24(6), 699-702.
Violay, M., Nielsen, S., Spagnuolo, E., Cinti, D., Di Toro, G., Di Stefano, G., 2013. Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes. Earth Planet Science Letters 361, 74–84.
Yano, K., Shimamoto, T., Oohashi, K., Dong, J.J., Lee, C.T. 2009. Ultra-low friction of shale and clayey fault gouge at high velocities: implication for Jiufengershan landslide induced by 1999 Chi-Chi earthquake. In Proceedings of The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 402-406.
Yao, L., Shimamoto, T., Ma, S., Han, R., Mizoguchi, K., 2013. Rapid postseismic strength recovery of Pingxi fault gouge from the Longmenshan fault system: experiments, implications for the mechanisms of high-velocity weakening of faults. Journal of Geophysical Research 118(8), 4547–4563.
Beutner, E.C., Gerbi, G.P., 2005. Catastrophic emplacement of the Heart Mountain block slide, Wyoming and Montana, USA. Bulletin of the Seismological Society of America 117, 724–735.
Bouchut, F., Westdickenberg, M., 2004. Gravity driven shallow water models for arvitrary topography. Comm. Math. Sci 2, 359–389.
Boullier, A.M., Yeh, E.C., Boutareaud, S., Song, S.R., Tsai, C.H., 2009. Micro–scale anatomy of the 1999 Chi–Chi earthquake principal slip zone. Geochemistry, Geophysics, Geosystems 10, Q03016.
Boutareaud, S., Boullier, A.M., Andre´ani, M., Calugaru, D.G., Beck, P., Song, S.R., Shimamoto, T., 2010. Clay clast aggregates in gouges: New textural evidence for seismic faulting. Journal of Geophysical Research 115, B02408.
Byerlee, J., 1978. Friction of rocks. Pure and Applied Geophysics 116, 615–626.
Campbell, C.S., 1989. Self–lubrication for long runout landslides. The Journal of Geology 97, 653–665.
Campbell, C.S., Cleary, P.W., Hopkins, M., 1995. Large–scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research: Solid Earth 100, 8267–8283.
Chang, K.J., Taboada, A., Lin, M.L., Chen, R.F., 2005. Analysis of landsliding by earthquake shaking using a block–on–slope thermo–mechanical model: example of Jiufengershan landslide, central Taiwan. Engineering Geology 80, 151–163.
Chang, K.J., Wei, S.K., Chen, R.F., Chan, Y.C., Tsai, P.W., Kuo, C.Y., 2013. Empirical Modal Decomposition of Near Field Seismic Signals of Tsaoling Landslide. In Earthquake–Induced Landslides, Springer Berlin Heidelberg, 421–430.
Chen, T.C., Lin, M.L., Hung, J.J., 2004. Pseudostatic analysis of Tsao–Ling rockslide caused by Chi–Chi earthquake. Engineering Geology 71, 31–47.
Chen, R.F., Chan, Y.C., Angelier, J., Hu, J.C., Huang, C., Chang, K.J., Shih, T.Y., 2005. Large earthquake–triggered landslides and mountain belt erosion: the Tsaoling case, Taiwan. Comptes Rendus Geoscience 337, 1164–1172.
Chen, R.F., Chang, K.J., Angelier, J., Chan, Y.C., Deffontaines, B., Lee, C.T., Lin, M.L., 2006. Topographical changes revealed by high–resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi earthquake. Engineering Geology 88, 160–172.
Chen, T.C., Lin, M.L., Wang, K.L., 2014. Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan. Engineering Geology 171, 31–44.
Chigira, M., Wang, W.N., Furuya, T., Kamai, T., 2003. Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi–Chi earthquake, Taiwan. Engineering Geology, 68, 259–273.
Cleary, P.W., Campbell, C.S., 1993. Self‐lubrication for long runout landslides: Examination by computer simulation. Journal of Geophysical Research: Solid Earth 98, 21911–21924.
Crosta, G.B., Imposimato, S., Roddeman, D.G., 2003. Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Science 3, 523–538.
Davies, T.R., McSaveney, M.J., 2009. The role of rock fragmentation in the motion of large landslides. Engineering Geology 109(1), 67–79.
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311, 647–649.
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes, Nature 471, 494-498.
Donath, F.A., Parker, R.B., 1964. Folds and folding. Geological Society of America Bulletin 75, 45–62.
Dong, J.J., Lee, W.R., Lin, M.L., Huang, A.B., Lee, Y.L., 2009. Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi–Chi earthquake. Tectonophysics 466, 438–457.
Dong, J. J., Yang, C. M., Yu, W. L., Lee, C. T., Miyamoto, Y., Shimamoto, T., 2013. Velocity-displacement dependent friction coefficient and the kinematics of giant landslide, in Earthquake-Induced Landslides, edited by K. Ugai, H. Yagi, and A. Wakai, Springer, pp. 395-401.
Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., 2010. Evidence of thermal pressurization in high–velocity friction experiments on smectite–rich gouges. Terra Nova 22, 347–353.
Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., de Rossi, N., 2011. Low–to high–velocity frictional properties of the clay–rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research: Solid Earth 116, B09208.
Han, R., Shimamoto, T., Hirose, T., Ree, J.H. Ando, J., 2007. Ultra–low friction of carbonate faults caused by thermal decomposition. Science 316, 878–881.
Han, R., Hirose, T., 2012. Clay–clast aggregates in fault gouge: an unequivocal indicator of seismic faulting at shallow depths? Journal of Structural Geology 43, 92–99.
Hart, M.W., 2000. Bedding–parallel shear zones as landslide mechanisms in horizontal sedimental rocks. Environmrntal and Engineering Geoscience 6(5), 95–113.
Heim, A., 1932. Bergsturz und Menschenleben. Zürich: Fretz und Wasmuth.
Hirose, T., Shimamoto, T., 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research 110, B05202.
Huang, C.C., Lee, Y.H., Liu, H. P., Keefer, D.K., Jibson, R.W., 2001. Influence of surface–normal ground acceleration on the initiation of the Jih–Feng–Erh–Shan landslide during the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America 91(5), 953–958.
Hung, J.J., 1982. Investigation of engineering geology in the Tsaoling landslide, Report of rock mechanics tests, COA, 71-1.3-12(3) [in Chinese].
Hung, J.J., 2000. Chi–Chi earthquake induced landslides in Taiwan. Earthquake Engineering and Engineering Seismology 2, 25–33.
Hung, J.J., Lee, C.T., Lin, M.L., 2002. Tsao–ling rockslides, Taiwan. Catastrophic landslides: effects, occurrence, and mechanisms. Geological Society of America Review Engineering Geology 15, 91–115.
Hungr, O., 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal 32, 610–623.
Hungr, O., Evans, S. G., 1996. Rock avalanche run out prediction using a dynamic model. Proc., 7th Int. Symp. Landslides 1, Trondheim, Norway, 233–238.
Hungr, O., Evans, S.G., Bovis, M.J., Hutchinson, J.N., 2001. A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience 7, 221–238.
Hungr, O., Evans, S.G., 2004. Entrainment of debris in rock avalanches: an analysis of a long run–out mechanism. Geological Society of America Bulletin 116, 1240–1252.
Jibson, R.W., Keefer, D.K., 1993. Analysis of the seismic origin of landslides: examples from the New Madrid seismic zone. Geological Society of America Bulletin 105, 521–536.
Keefer, D.K., Wilson, R.C., 1989. Predicting earthquake–induced landslides with emphasis on arid and semi–arid environments, in Sadler, P.M. and Morton, D.M., eds., Landslides in a semi–arid environment: Riverside. California, Inland Geological Society 2, 118–149.
Kuo, C.Y., Tai, Y.C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R.F., Chang, K.J., 2009. Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography. Engineering Geology 104, 181–189.
Kuo, C.Y., Wei, S.K., Tsai, P.W., 2013. Ensemble empirical mode decomposition with supervised cluster analysis. Advances in Adaptive Data Analysis 5, 1350005.
Lee, C.N., 2001. Preliminary study on the Tsaoling landslide area under earthquake. (Master′s thesis) Institute of Civil Engineering, National Taiwan University.
Lee, W.H.K., Shin, T.C., Kuo, K.W., Chen, K.C., Wu, C.F., 2001. CWB free–field strong–motion data from the 21 September Chi–Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America 91, 1370–1376.
Lee, C.T., 2011. Geomorphological Evolution and geology of the Tsaoling rockslide. Journal of Chinese Soil and Water Conservation 42, 63–73.
Lee, C.T., 2012. Engineering challenges and countermeasures of the difficult geological conditions in Taiwan. 2012 Taiwan Rock Engineering Symposium, 29–36.
Legros, F., 2002. The mobility of long–runout landslides. Engineering Geology 63, 301–331.
Liao, C.J., Lee, D.H., Wu, J.H., Lai, C.Z., 2011. A new ring–shear device for testing rocks under high normal stress and dynamic conditions. Engineering Geology 122, 93–105.
Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J.J., Lee, C.T., 2009. Dynamic weakening of bedding–parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi–Chi earthquake. The Next Generation of Research on Earthquake–induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi–Chi Earthquake, 398–401.
Mizoguchi, K., Hirose, T. Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high–velocity friction experiments: an example of the 1995 Kobe earthquake. Geophysical Research Letters 34, L01308.
Newmark, N.M., 1965. Effects of earthquakes on dams and embankments. Geotechnique 15, 139–159.
Pirulli, M., Mangeney, A., 2008. Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mechanics and Rock Engineering 41(1), 59–84.
Romeo, R., 2000. Seismically induced landslide displacements: a predictive model. Engineering Geology 58, 337–351.
Sawai, M., Shimamoto, T., Togo, T., 2012. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. Journal of Structural Geology 38, 117–138.
Scheidegger, A.E., 1975. Physical aspects of natural catastrophes, Elsevier, 289p.
Sepúlveda, S.A., Murphy, W., Jibson, R.W., Petley, D.N., 2005. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: The case of Pacoima Canyon, California. Engineering Geology 80(3–4), 336–348.
Shimamoto, T., Tsutsumi, A., 1994. A new rotary–shear high–speed frictional testingmachine: its basic design and scope of research. Journal of Structural Geology 39, 65–78.
Sosio, R., Crosta, G.B., Hungr, O., 2008. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology 100, 11–26.
Tang, C.L., Hu, J.C., Lin, M.L., Angelier, J., Lu, C.Y., Chan, Y.C., Chu, H.T., 2009. The Tsaoling landslide triggered by the Chi–Chi earthquake, Taiwan: insights from a discrete element simulation. Engineering Geology 106, 1–19.
Tanner, P.W.G. 1989. The flexural–slip mechanism. Journal of Structural Geology 11, 635–655.
Tanner, P.W.G. 1992. Morphology and geometry of duplexes formed during flexural–slip folding. Journal of Structural Geology 14(10), 1173–1192.
Tika, T.E., Hutchinson, J.N., 1999. Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique 49, 59–74.
Togo T., Shimamoto, T., Ma, S., Hirose, T., 2011. High–velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop, Sichuan, China and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake. Earthquake Science 24, 267–281.
Togo, T., Shimamoto, T., 2012. Energy partition for grain crushing in quartz gouge during subseismic to seismic fault motion: an experimental study. Journal of Structural Geology 38, 139–155.
Togo, T., Shimamoto, T., Dong, J.J., Lee, C.T., Yang, C.M., 2014. Triggering and runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan Chi–Chi earthquake, as revealed by high–velocity friction experiments. Geophysical Research Letters 41(6), 1907–1915.
Towhata, I., Yamazaki, H., Kanatani, M., Lin, C.E., Oyama, T., 2001. Laboratory shear tests of rock specimens collected from site of Tsao–ling earthquake–induced landslide. Tamkang Journal of Science and Engineering 4, 209–219.
Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Geological Society of Japan 102, 240–248.
Tsutsumi, A., Shimamoto, T., 1997, High–velocity frictional properties of gabbro. Geophysical Research Letters 24, 699–702.
Ujiie, K., Tsutsumi, A., 2010. High–velocity frictional properties of clay–rich fault gouge in a megasplay fault zone, Nankai subduction zone. Geophysical Research Letters 37, L24310.
Voight, B., Faust, C., 1982. Frictional heat and strength loss in some rapid landslides. Geotechnique 32, 43–54.
Wang, W.N., Wu, H.L., Nakamura, H., Wu, S.C., Ouyang, S., Yu, M.F., 2003. Mass movements caused by recent tectonic activity: The 1999 Chi‐chi earthquake in central Taiwan. Island Arc 12, 325–334.
Warr, L.N., Cox, S.J., 2001. Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand, in The Nature and Significance of Fault Zone Weakening. Edited by Holdsworth et al., Geological Society, London, Special Publications 186, 85–101.
WRA, 2000. The report: Remediation of Tsaoling landslide. Water Resources Agency, Ministry of Economic Affairs, Taiwan. [in Chinese]
Weissel, J.K., Stark, C.P., 2001. Landslides triggered by the 1999 Mw7.6 Chi Chi earthquake in Taiwan and their relationship to topography. In Geoscience and Remote Sensing Symposium, 2001. IGARSS′01. IEEE 2001 International 2, 759–761.
Wieczorek, G.F., Wilson, R.C., Harp, E.L., 1985. Map showing slope stability during earthquake in San Mateo County, California. Miscellaneous Investigation Maps I–1257–E, United States Geological survey.
Wilson, R.C., Keefer, D.K., 1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America 73, 863–877.
Wu, J.H., Chen, C.H., 2009. Back calculating the seismic shear strengths of the Tsaoling landslide associated with accelerograph and GPS data. Iranian Journal of Science and Technology, Transaction B: Engineering 33, 301–311.
Wu, J.H., Chen, C.H., 2011. Application of DDA to simulate characteristics of the Tsaoling landslide. Computers and Geotechnics 38, 741–750.
Wu, J.H., Tsai, P.H., 2011. New dynamic procedure for back-calculating the shear strength parameters of large landslides. Engineering Geology 123 (1–2), 129–147.
Yao, L., Ma, S., Shimamoto, T., Togo, T., 2013a. Structures and high–velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake. Tectonophyscis 599, 135–156.
Yao, L., Shimamoto, T., Ma, S., Han, R., Mizoguchi, K., 2013b. Rapid postseismic strength recovery of Pingxi fault gouge from the Longmenshan fault system: Experiments and implications for the mechanisms of high–velocity weakening of faults. Journal of Geophysical Research: Solid Earth 118, 1–17.
Yano, K., Shimamoto, T., Oohashi, K., Dong, J.J. Lee, C.T., 2009. Ultra–low friction of shale and clayey fault gouge at high velocities: implication for Jiufengershan landslide induced by 1999 Chi–Chi earthquake. The Next Generation of Research on Earthquake–induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi–Chi Earthquake, 402–406.
Airy, G.B., 1855. On the computation of the effect of attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philosophical Transactions of the Royal Society 145, 101-104.
ASTM, 2005. Standard practices for preparing rock core as cylindrical test specimens and verifying conformance to Dimensional and shape tolerances. D4543.
ASTM, 2005. Standard test method for unconfined compressive strength of intact rock core specimens. D2938.
ASTM, 2005. Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method. D5873.
ASTM, 2005. Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications. D5731.
Barton, N., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock mechanics 6(4), 189-236.
Barton, N., 2002. Some new Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics and Mining Sciences 39(2), 185-216.
Behrmann, J.H., Brown, K., Moore, J.C., Mascle, A., Taylor, E., Alvarez, F., Andreiff, P., Barnes, R., Beck, C., 1988. Evolution of structures and fabrics in the Barbados accretionary prism. Insights from Leg 110 of the Ocean Drilling Program. Journal of Structural Geology 10(6), 577–591.
Bieniawski, Z.T., 1973. Engineering classification of jointed rock masses. Civil Engineer in South Africa 15, 353-343.
Bieniawski, Z.T., 1976. Rock mass classification in rock engineering. Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg, Balkema, Cape Town 1, 97-106.
Bieniawski, Z.T., 1989. Engineering rock mass classifications. 257 pp.
Bilotti, F., Shaw, J.H., 2005. Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles. Bulletin of American Association of Petroleum Geologists 89(11), 1475-1491.
Braathen, A., Bergh, S.G., Maher, H.D., 1999. Application of a critical wedge taper model to the Tertiary transpressional foldthrust belt on Spitsbergen, Svalbard. Geological Society of America Bulletin 111(10), 1468-1485.
Breen, N.A., 1987. Three investigations of accretionary wedge deformation: Ph.D. Thesis, University of California – Santa Cruz, Santa Cruz, California, 132 pp.
Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F., Baumgärtner, J., 1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. Journal of Geophysical Research 102(B8), 18453-18475.
Buiter, S.J.H., 2012. A review of brittle compressional wedge models. Tectonophysics 530-531, 1-17.
Byerlee, J.D., 1978. Friction of rocks. Pure and Applied Geophysics 116 (4–5), 615-626.
Carena, S., Suppe, J., Kao, H., 2002. Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geology 30(10), 935– 938.
Chang, C.T., Chen, Y.J., Yen, S.T., Chai, Y.C.E. 1996. Study of engineering properties and construction method for gravel formations in central and northern Taiwan. Sino-Geotechnics 55, 35-46 [in Chinese].
Chen, W.S., Ridgway, K.D., Horng, C.S., Chen, Y.G., Shea, K.S., Yeh, M.G., 2001. Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan: Eustatic and tectonic controls on deposition. Geological Society of America Bulletin 113(10), 1249-1271.
Chu, B.L., Pan, J.M., Chang, K.H., 1996. Field geotechnical engineering properties of gravel formations in western Taiwan. Sino-Geotechnics, 55, 47-58 [in Chinese].
Dahlen, F.A., Suppe, J., Davis, D., 1984. Mechanics of fold- and-thrust belt and accretionary wedges: cohesive coulomb theory. Journal of Geophysical Research 89, 10087-10101.
Dahlen, F.A., Barr, T.D., 1989. Brittle frictional mountain building: 1. Deformation and mechanical energy budget. Journal of Geophysical Research 94(B4), 3906- 3922.
Dahlen, F.A., 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences 18, 55-99.
Davis, D., Suppe, J., Dahlen, F.A., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research 88(B2), 1153-1172.
DeCelles, P.G., Mitra, G., 1995. History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. Geological Society America Bulletin 107(4), 454-462.
den Hartog, S.A.M., Peach, C.J., de Winter, D.A.M., Spiers, C.J. Shimamoto, T., 2012. Frictional properties of megathrust fault gouges at low sliding velocities: New data on effects of normal stress and temperature. Journal Structural Geology 38, 156-171.
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011. Fault lubrication during earthquakes. Nature 471, 494-498.
Flueh, E.R., Fisher, M.A., Bialas, J., Childs, J.R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D.W., Brink, Uri ten, Trehu, A.M., Vidal, N., 1998. New seismic images of the Cascadia subduction zone from cruise SO108 —ORWELL, Tectonophysics 293, 69-84.
Goodman, R. E., 1989. Introduction to rock mechanics, 476 pp.
Graveleau, F., Malavieille, J., Dominguez, S., 2012. Experimental modelling of orogenic wedges: A review. Tectonophysics 538-540, 1-66.
Haimson, B.C., 1990. Scale effects in rock stress measurements. In Proceedings of International Workshop on Scale Effects in Rock Masses, 89-101.
Heuze, F.E., 1980. Scale effects in the determination of rock mass strength and deformability. Rock Mechanics 12(3-4), 167-192.
Hickman, S., Zoback, M., 2004. Stress orientations and magnitudes in the SAFOD pilot hole. Geophysical Research Letters 31, L15S12.
Hoek, E., Brown, E.T., 1980a. Underground Excavations in Rock. Institution of Mining and Metallurgy, London, 527 pp.
Hoek, E., Brown, E.T., 1980b. Empirical strength criterion for rock masses. Journal of Geotechnical Engineering Division 106(GT9), 1013-1035.
Hoek, E., 1983. Strength of jointed rock masses. 23rd. Rankine Lecture. Géotechnique 33(3), 187-223.
Hoek, E., Brown, E.T., 1988. The Hoek-Brown failure criterion – a 1988 update. Proceedings of 15th Canadian Rock Mechanics Symposium 31-38.
Hoek, E., Wood, D., Shah, S., 1992. A modified Hoek-Brown criterion for jointed rock masses. ISRM Symposium, British Geotechnical Society, London, 209-214.
Hoek, E., 1994. Strength of rock and rock masses. ISRM News Journal 2(2), 4-16.
Hoek, E., Kaiser, P.K., Bawden, W.F., 1995. Support of Underground Excavations in Hard Rock. Balkema, Rotterdam.
Hoek, E., Brown, E.T., 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 34(8), 1165-1186.
Hoek, E., Marinos, P., Benissi, M., 1998. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses: The case of the Athens schist formation. Bulletin of Engineering Geology and the Environment 57(2), 151-160.
Hoek, E., Carranza-Torres, C., Corkum, B., 2002. Hoek–Brown failure criterion – 2002 edition. 5th North American Rock Mechanics Symposium and 17th Tunnelling Association of Canada Conference 1, 267-273.
Hoek, E., Marinos, P.G., Marinos, V.P., 2005. Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences 42(2), 277-285.
Huang C.S., Shea K.S., Chen M.M., 2000. Explanatory text of the geologic map of Taiwan scale 1:50,000 Sheet 32 PULI. Taipei: Central Geological Survey, MOEA [in Chinese].
Hudson, J.A., Crouch, S.L., Fairhurst, C., 1972. Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Engineering Geology 6(3), 155-189.
Hung, J.H., Ma, K.F., Wang, C.Y., Ito, H., Lin, W., Yeh, E.C., 2009. Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics 446, 307–321.
Hubbert, M.K., Rubey, W.W., 1959. Role of fluid pressure in mechanics of overthrust faulting. 1. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Bulletin of Geological Society America 70, 115-166.
Kuo, L.W., Song, S.R., Yeh, E.C., Chen, H.F., 2009. Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters 36(18), L18306. doi:10.1029/2009GL039269
Lallemand, S.E., Schnürle, P., Malavieille, J., 1994. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion. Journal of Geophysical Research 99, (B6), 12033-12055.
Lin, W., Yeh, E.C., Ito, H., Hirono, T., Soh, W., Wang, C.Y., Ma, K.F., Hung, J.H., Song, S.R., 2007. Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of an elastic strain recovery method to 3D in-situ stress determination. Terrestrial, Atmospheric and Oceanic Sciences 18 (2), 379-393.
Lin, W., Yeh, E.C., Hung, J.H., Haimson, B., Hirono, T., 2010. Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP). Tectonophysics 482, 82-91.
Liu, H.C., Lee, J.F., 1998. Explanatory text of the geologic map of Taiwan scale 1:50,000 Sheet 38 YUNLIN. Taipei: Central Geological Survey, MOEA [in Chinese].
Ma, K.F., Brodsky, E.E., Mori, J., Ji, C., Song, T.R.A., Kanamori, H., 2003. Evidence for fault lubrication during the 1999 Chi‐Chi, Taiwan, earthquake (Mw7. 6). Geophysical Research Letters 30(5).
Marinos, P., Hoek, E., 2000. GSI: a geologically friendly tool for rock mass strength estimation. International Conference on Geotechnical and Geological Engineering, Melbourne, 1422-1442.
Marinos, P., Hoek, E., 2001. Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bulletin of Engineering Geology and the Environment 60(2), 85-92.
Marinos, V., Marinos, P., Hoek, E., 2005. The geological strength index: Applications and limitations. Bulletin of Engineering Geology and the Environment 64, 55-65.
Mehrotra, V.K., 1992. Estimation of engineering parameters of rock mass. IIT Roorkee, Uttarakhand, India, Ph.D. Thesis, 267 pp.
Mourgues, R., Cobbold, P.R., 2006. Thrust wedges and fluid overpressures: Sandbox models involving pore fluids. Journal of Geophysical Research 111, B05404. doi:10.1029/ 2004JB003441
Oohashi, K., Hirose, T., Takahashi, M., Tanikawa, W., 2015. Dynamic weakening of smectite‐bearing faults at intermediate velocities: Implications for subduction zone earthquakes. Journal of Geophysical Research 120(3), 1572–1586, doi:10.1002/2015JB011881.
Plesch, A., Oncken, O., 1999. Orogenic wedge growth during collision- Constraints on mechanics of a fossil wedge from its kinematic record (Rhenohercynian FTB, central Europe). Tectonophysics 309, 117-139.
Sawai, M., Hirose, T., Kameda, J., 2014. Friction properties of incoming pelagic sediments at Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake. Earth, Planets Space 66, 65-72.
Şen, Z., Sadagah, B.H., 2003. Modified rock mass classification system by continuous rating. Engineering Geology 67(3), 269-280.
Song, S.R., Kuo, L.W., Yeh, E.C., Wang, C.Y., Hung, J.H., Ma, K.F., 2007. Characteristics of the lithology, fault-related rocks and fault zone structures in TCDP Hole-A. Terrestrial, Atmospheric and Oceanic Sciences 18(2), 243-269.
Sonmez, H., Ulusay, R., 1999. Modifications to the geological strength index (GSI) and their applicability to stability of slopes. International Journal of Rock Mechanics and Mining Sciences 36(6), 743-760.
Suppe, J., Wittke, J. H., 1977. Abnormal pore-fluid pressure in relation to stratigraphy and structure in the active fold-and-thrust belt of northwestern Taiwan. Petroleum Geology of Taiwan 14, 11-14.
Suppe, J., 2007. Absoulte fault and crustal strength from wedge tapers. Geology 35(12), 1127-1130.
Tanikawa, W., Shimamoto, T., 2009. Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake. Journal of Geophysical Research 114 (B01402), 15. http://dx.doi.org/10.1029/2008JB005750.
Tanikawa, W., Mukoyoshi, H., Tadai, O., Hirose, T., Tsutsumi, A., Lin, W., 2012. Velocity dependence of shear-induced permeability associated with frictional behavior in fault zones of the Nankai subduction zone. Journal of Geophysical Research 117, B05405, doi:10.1029/2011JB008956.
Togo, T., Shimamoto, T., Ma, S., Hirose, T., 2011. High-velocity friction behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake. Earthquake Science 24, 267-281.
Townend, J., Zoback, M.D., 2000. How faulting keeps the crust strong. Geology 28(5), 399-402.
Tsutsumi, A., Fabbri O., Karpoff A.M., Ujiie, K., Tsujimoto, A., 2011. Friction velocity dependence of clay-rich fault material along a megasplay fault in the Nankai subduction zone at intermediate to high velocity. Geophysical Research Letters 38, L19301. doi:10.1029/2011GL049314.
Tzamos, S., Sofianos, A.I., 2007. A correlation of four rock mass classification systems through their fabric indices. International of Journal Rock Mechanics and Mining Science 44(4), 477-495.
Wang, K., Hu, Y., 2006. Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. Journal of Geophysical Research 111, B06410. doi:10.1029/2005JB004094.
Wang, K., He, J., Hu, Y., 2006. A note on pore fluid pressure ratios in the Coulomb wedge theory. Geophysical Research Letters 33, L19310. doi:10.1029/2006GL027233.
Wu, W.J., Dong, J.J., 2012. Determining the maximum overburden along thrust faults using a porosity versus effective confining pressure curve. Tectonophysics 578, 63-75.
Wu, Y.H., Yeh, E.C., Dong, J.J., Kuo, L.W., Hsu, J.Y., Hung, J.H., 2008. Core-log integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project, Geophysical Journal International 174, 949-965.
Yabe, Y., Song, S.R., Wang, C.Y., 2008. In-situ stress at the northern portion of the Chelungpu fault, Taiwan, estimated on boring cores recovered from a 2-km-deep hole of TCDP. Earth Planets Space 60, 809-819.
Yang, C.M., Yu, W.L., Dong, J.J., Kuo. C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide — What can we learn from a simple rigid block model and a velocity–displacement dependent friction law? Engineering Geology 182, 158-181.
Yeng, K.T., 2000. The residual strength of Chin-Shui shale in relation to the slope stability of Tsao-Ling. Mater Thesis, Department of Civil Engineering, National Taiwan University, Taipei.
Yue L.F., Suppe, J., 2014. Regional pore-fluid pressures in the active western Taiwan thrust belt: A test of the classic Hubbert-Rubey fault- weakening hypothesis. Journal of Structural Geology 69, 493-518.
Yuan, X.P., Leroy, Y.M., Maillot, B., 2015. Tectonic and gravity extensional collapses in overpressured cohesive and frictional wedges. Journal of Geophysical Research 120, 1833-1854. doi:10.1002/2014JB011612.
Zhao, W.L., Davis, D.M., Dahlen, F.A., Suppe, J., 1986. Origin of convex accretionary wedges: Evidence from Barbados. Journal of Geophysical Research 91(B10), 10246-10258.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2017-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明