博碩士論文 100684003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:3.16.29.209
姓名 盧志恒(Chih-Heng Lu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 應用雷達影像分析地質災害的特性與時空分佈
(Application of radar images to analyze the characteristics and the spatiotemporal distribution of geologic hazards)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從雷達差分干涉影像成功的監測Landers地震的同震地表變形位移量之後,雷達差分干涉技術(DInSAR)已經被廣泛的應用在許多地球科學的領域上。近20年來,許多理論與演算法的精進已突破傳統雷達差分干涉的限制,如永久散射體差分干涉技術(Persistent Scatterer InSAR, PSI)、短基線長子集演算法(Small Baseline Subset, SBAS)和多時雷達差分干涉技術(Multi-Temporal InSAR, MTI),並且成功的運用火山監測、冰河流動、新期構造活動和自然災害等議題上。然而許多地質議題仍因為其各自的環境因素而造成此技術在應用上的限制與問題,因此本研究針對三個不同的地質危害進行不同角度的探討,並且利用地質統計的方法,結合雷達差分干涉技術的結果和其他測地資料與監測資料,提升InSAR結果的精確性與合適性。
第二章是探討位於台灣中西部的濁水溪沖積扇,該地自1970年以來即遭受到抽水引發的地層下陷問題。藉由共同克利金(cokriging)演算法整合1993年到2008年的InSAR和水準測量結果,提升空間和時間上的監測解析度,並以連續GPS站的資料作為驗證。研究結果顯示共同克利金演算法可以提升InSAR的精確度並保留空間上較好解析度的特性,同時發現濁水溪沖積扇的地層下陷中心從沿海往內陸移動的時間分界點位於1998年,而地層下陷線速率自2005至2008年有逐漸減緩的趨勢。
第三章研究是探討台南市區因為美濃地震所引起的災害問題。將地震前後的同調性(Coherence)影像對進行分析,透過統計方法處理地震前30幅升降軌道的同調性影像,再搭配地表物隨時間的去相關特性,建立兩步驟(two-step)門檻值方法,挑選出因受到地震而造成同調性差異的像素(coseismic coherence difference, CCD),而這些像素可製作因地震造成災害的位置分佈圖,甚至包含建築物損壞與結構破裂的位置。此外,解算同震位移升降軌道的相位資訊所獲得的二維方向(垂直與東西方向)位移量,與現地調查量測的結果相互吻合,並且顯示在關廟市區的同震地表位移有受到關廟向斜的影響,造成關廟市區南北相反的地表活動狀況。
第四章研究是探討義大利Apennine山區的坡地潛移活動問題。位於Caramanico內的坡地潛移活動都曾受到場址效應的地震事件、強降雨的事件和融雪的泉水事件所誘發,因此透過PSI技術分析自2015年至2018年的48幅干涉影像對,以獲得衛星視角(line-of-sigh, LOS)方向的時間序列變化結果。當發生地震事件時,位於曾發生過坡地滑移位置上的PS點位,會顯示LOS方向伸長的變化資訊。透過MATLABR軟體的detrend函數消除趨勢後的隨時間變異結果,可以發現地震事件對場址放大的效應在Caramanico比在Lettomanoppelo的影響還顯著。此外,副影像的大氣效應影響在Caramanico和Lettomanoppelo都非常類似,但是仍與每月降雨和消除趨勢後的隨時間變異結果無法吻合,未來仍須更詳細的大氣資訊、更精確的紀錄資料與更高頻率的監測結果,才能有效分析各個因素對消除趨勢隨時間變異結果的影響。
摘要(英) Since the first radar interferometry of Landers earthquake was successful to estimate the surface deformation, the interferometric synthetic aperture radar (InSAR) technique have been applied widely in earth science. In recent 20 years, the improved algorithms and theories, such as Permanent Scatterers?, Small Baseline Subset (SBAS), Persistent Scatterer InSAR (PSI), and Multi-Temporal InSAR (MTI), have overcame the InSAR limitations and prospered in many geoscience fields, such as volcanology, glaciology, neotectonic activities, and natural hazards. However, every geologic issue still existed the limitations and problems in its environment. For upgrading the accuracy and appropriateness of InSAR data in different geologic issues, we combine the InSAR results with other geodetic or monitoring data with the geostatistics method and focus on three different types of geologic hazards in different orientation analysis.
The chapter 2 is the land subsidence issue due to groundwater withdraw in the Choushui River Fluvial Plain (CRFP) of western central Taiwan. Exploiting various observational techniques this study employed a geostatistical cokriging algorithm to integrate multiple types of observations for mapping land subsidence in the CRFP between 1993 and 2008 to effectively reduce the regional effects and interpolation biases in InSAR observations. Precise leveling data and persistent scatterer InSAR results were first assessed through variogram analysis, the results of which revealed similar directional variograms and no nugget effect for the experimental variograms. The accuracy of a cokriged land subsidence map was verified using continuous GPS data at the same cell locations and was significantly improved compared to when the precise leveling data were used. The cokriging interpolations of land subsidence in the CRFP indicated that the severe subsidence areas had moved from the coastal area to the central CRFP. An obvious critical subsidence migration point for the southern CRFP occurred in 1998. Overall subsidence rate trends increased in the early periods (1993–1998 and 1998–2003) and decreased in the most recent period (2005–2008).
The chapter 3 is the Meinong earthquake-induced disasters in urban area. This study proposes a workflow that enables the accurate identification of earthquake-induced damage zones by using coherence image pairs before and after an earthquake event. The workflow uses InSAR processing to account for coherence variations between coseismic and preseismic image pairs. The coherence difference between two image pairs is useful information to detect specific disasters in a regional-scale area after an earthquake event. To remove background effects such as atmospheric effect and ordinal surface changes, this study employs the two-step threshold method to develop the coseismic coherence difference (CCD) map for our analyses. 34 Sentinel-1 images between January 2015 and February 2016 were collected to process 30 precoseismic image pairs and 2 coseismic image pairs for assessing multiple types of disasters in the Tainan City of southwestern Taiwan, where severe damages were observed after the Meinong earthquake event. The coseismic unwrapping phase results were further calculated to estimate the surface displacement in east-west and vertical directions. Results in the CCD map agree well with the observations from post-earthquake field surveys. The workflow can accurately identify earthquake-induced land subsidence and surface displacements, even for areas with insufficient geological data or for areas that had been excluded from the liquefaction potential map. In addition, the CCD details the distribution of building damages and structure failures, which might be useful information for emergency actions applied to regional-scale problems. The inversion of 2D surface displacement reveals complex behavior of geological activities during the earthquake. In the foothill area of the Tainan City, the opposite surface displacements in local areas might be influenced by the axis activities of the Kuanmiao syncline.
The chapter 4 is the creeping landslide in the Apennine mountain of central Italy. Because the amplification effect of earthquake event, strong rainfall event, and the spring of melting snow could trigger the creeping behaviors of landslide in the Caramanico, this study processes 48 interferometric images between 2015 and 2018 with PSI technique to analysis the line-of-sight (LOS) time-series displacements in the landslide area. When occurring the earthquake events, the obvious drop down behaviors in time-series displacement results could be notable, especially in the area with previous landslide event. Exploiting the variation of LOS time-series results with the detrend function of MATLABR software, the amplification factors of the earthquake events with magnitude larger than 4 were considerably higher than reference site in the Caramanico and the movement features could be the sliding directions of some potential landslide area. The site amplification effect of earthquake event influences the differences of de-trend results between Caramanico and Lettomanippello partially. The slave atmospheric effects in Caramanico and Lettomanoppello have similar pattern beside during March to November, 2016. However, the monthly rainfall data is hardly match with the slave atmospheric effects. The relationship between de-trend results, slave atmospheric effect, and monthly rainfall needs more detail atmospheric data, more precise recording data, and higher frequent observation data to analysis the weighting of each factor.
關鍵字(中) ★ 雷達差分干涉
★ 共同克利金
★ 同調性分析
★ 地層下陷
★ 土壤液化
★ 坡地潛移
關鍵字(英) ★ InSAR
★ Cokriging
★ Coherence analysis
★ Land subsidence
★ Liquefaction
★ Creeping landslide
論文目次 Chinese abstract…………………………………………………………………………………....................i
English abstract……………………………………………………………………………………..................ii
Acknowledgement………………………………………………………………………………...................iv
Table of contents…………………………………………………………………………………...................v
List of figures……………………………………………………………………………………....................vii
List of tables…………………………………………………………………………………….....................viii
1. Introduction…………………………………………………………………………………........................1
2. Study I: Improvement of spatiotemporal resolution for monitoring land subsidence in Choushui River Fluvia Plain………………………………………………….............3
2.1 CRFP background and sources of observations……………………………………..........4
2.1.1 The integration technology of multiple data in the CRFP…………………...........4
2.1.2 Hydrogeological description in the CRFP……………………………………………….....4
2.1.3 Sources of observation data……………………………………………………………...........6
2.1.3.1 Precise leveling……………………………………………………………………..................6
2.1.3.2 Persistent Scatterers InSAR (PSI)………………………………………………….........7
2.2 Methodology………………………………………………………………………………...................11
2.2.1 Experimental variogram………………………………………………………………..............12
2.2.2 Cokriging interpolation………………………………………………………………..............13
2.3 Results and discussion……………………………………………………………………..............14
2.3.1 Different types of observations and variogram analyses………………………….14
2.3.2 Cokriging interpolations for the three intervals in Period 3……………………...17
2.3.3 Cokriged results comparisons with continuous GPS observations…………..19
2.3.4 Cokriging interpolations for Periods 1 and 2…………………………………………...21
2.3.5 Results comparison with observations from previous studies………………...24
3. Study II: Identification of Meinong earthquake-induced disasters in urban area........................................................................................................................26
3.1 Materials & Method………………………………………………………………………................29
3.1.1 Study Area……………………………………………………………………………....................29
3.1.2 Interferogram process………………………………………………………………….............30
3.1.3 Ccoherence difference induced by the earthquake………………………………….32
3.2 Results……………………………………………………………………………………......................37
3.2.1 Background Effects……………………………………………………………………..............37
3.2.2 Validation of CCD Map………………………………………………………………..............40
3.2.2.1 CCD Map…………………………………………………………………………....................40
3.2.2.2 Comparison with Field Surveys…………………………………………………..........41
3.2.2.3 Comparison with Land Use Investigation Map…………………………………...42
3.3 Discussion…………………………………………………………………………………...................44
3.3.1 Comparison of CCD and Liquefaction Potential and PGA Maps……………….44
3.3.2 Inversion of 2D Surface Displacements……………………………………………….....45
3.3.2.1 Overview of Surface Deformation……………………………………………….........45
3.3.2.2 Land Subsidence in the Annan District……………………………………………....47
3.3.2.3 Surface Deformation in the Guanmiao District…………………………………...47
4. Study III: Limitation of monitoring the creeping slope deformation within vegetation area in central Italy…………………………………………………………………………....50
4.1 Geological Background of Study Area…………………………………………………….......50
4.1.1 Regional seismotectonic framework…………………………………………………........50
4.1.2 Lithologic units and hydrogeological setting…………………………………………...51
4.1.3 Recent thirty-years landslide events………………………………………………….......52
4.1.3.1 Rainfall-induced landslides………………………………………………………............52
4.1.3.2 Earthquake-induced landslides…………………………………………………..........53
4.2 Materials……………………………………………………………………………...........................54
4.2.1 SAR Images………………………………………………………………………….....................54
4.2.2 Earthquake data………………………………………………………………….....................56
4.3 Preliminary results…………………………………………………………………………...............56
4.3.1 Interferometric results…………………………………………………………………............56
4.3.2 PSI mean velocity and time-series results……………………………………………...59
4.3.2.1 Caramanico............................................................................................................59
4.3.2.2 Lettomanoppello…………………………………………………………………................60
4.3.3 Field survey data in the Caramanico………………………………………………….......62
4.4 Discussion…………………………………………………………………………………...................64
4.4.1 Time-series variation……………………………………………………………….................64
4.4.2 Comparison with previous researches and field survey data in the Caramanico............................................................................................................67
5. Conclusion and recommends…………………………………………………………………..........68
Reference…………………………………………………………………………………………....................72
參考文獻 Atzori, S., C. Tolomei, A. Antonioli, J. P. Merryman Boncori, S. Bannister, E. Trasatti, P. Pasquali, and S. Salvi, 2012: The 2010-2011 Canterbury, New Zealand, seismic sequence: Multiple source analysis from InSAR data and modeling. J. Geophys. Res., 117, B08305. DOI: 10.1029/2012JB009178.
Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti, 2002: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 40(11), 2375–2383. Doi:10.1109/TGRS.2002.803792
Bonilla, M.G., 1975: A review of recently active faults in Taiwan. U.S. Geological Survey Open-File Report 75-41, version 1.1, pp .43.
Boschi, E., E. Guidoboni, G. Ferrari, G. Valensise, and P. Gasperini, 1997: Catalogo dei forti terremoti in Italia dal 461 aC al 1990. I.N.G.–S.G.A, Bologna.
Bovenga, F., R. Nutricato, A. Refice, and J. Wasowski, 2006: Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng. Geol., 88, 218-239
Burgmann, R., P.A. Rosen, and E. J. Fielding, 2000: Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu. Rev. Earth Pl. Sc., 28, 169-209.
Calderhead, A., R. Therrien, A. Rivera, R. Martel, and J. Garfias, 2011: Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv. Water Resources, 34, 83-97. DOI: 10.1016/j.advwatres.2010.09.017.
Chang C. P., T. Y. Chang, C. T. Wang, C. H. Kuo, and K. S., Chen, 2004a: Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan. Math. Comput. Simulat., 67, 351–359. doi: 10.1016/j.matcom.2004.06.003.
Chang, C. P., C. T. Wang, T. Y. Chang, K. S. Chen, L. S. Liang, E. Pathier, and J. Angelier, 2004b: Application of SAR interferometry to a large thrust deformation: the 1999 Mw = 7.6 Chichi earthquake in central Taiwan. Geophys. J. Int., 159, 9-16. DOI: 10.1111/j.1365-246X.2004.02385.x.
Chang, C. P., K.S. Chen, C. T. Wang, J. Y. Yen, T. Y. Chang, and C. W. Lin, 2004c: Application of space-borne radar interferometry on crustal deformations in Taiwan: A perspective from the nature of events. Terr. Atmos. Ocean. Sci., 15(3), 523-543.
Chang, C. P., J. Y. Yen, A. Hooper, F. M. Chou, Y. A. Chen, C. S. Hou, W. C. Hung, and M. S. Lin, 2010: Monitoring of surface deformation in northern Taiwan using DInSAR and PSInSAR techniques. Terr. Atmos. Ocean. Sci., 21(3), 447-461. DOI: 10.3319/TAO.2009.11.20.01(TH).
Chang, L. S., M. C. Chow, and P. Y. Chen, 1947: The Taiwan earthquake of december 5, 1946. Taiwan Geol. Surv. Bull., 1, 17-20.
Chen, C. H., C. H. Wang, Y. J. Hsu, S. B. Yu, and L. C. Kuo, 2010: Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Eng. Geol., 115, 122-131, DOI: 10.1016/j.enggeo.2010.05.011.
Chen, C. W., and H. A. Zebker, 2002: Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens., 40(8), 1709-1719. DOI: 10.1109/TGRS.2002.802453.
Central Geological Survey (CGS), 1999: Project of groundwater monitoring network in Taiwan during first stage – research report of Choushui River alluvial fan (in Chinese). Water Resources Bureau, Ministry of Economic Affairs: Taipei City, Taiwan, R.O.C., 383 pp.
Central Geological Survey (CGS), 2015: Integration and analysis of geological information for hazard mitigation in urbane area (2/4), Tainan, Project No. 104-5926901000-05 (in Chinese); Central Geological Survey, Ministry of Economic Affairs: New Taipei City, Taiwan, R.O.C., 2015.
Central Geological Survey (CGS), 2016: Report on the 2016/02/06 Earthquake (in Chinese); Central Geological Survey, Ministry of Economic Affairs: New Taipei City, Taiwan, R.O.C., 103 pp.
Ching, K. E., R. J. Rau, K. M. Johnson, J. C. Hu, and J. C. Lee, 2011: Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005. J. Geophys. Res., 116, B09405. DOI: 10.1029/2010JB008058.
Colesanti, C., and J. Wasowski, 2006: Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng. Geol., 88, 173-199. DOI: 10.1016/j.enggeo.2006.09.013.
Del Gaudio, V., and J. Wasowski, 2007: Directivity of slope dynamic response to seismic shaking. Geophys. Res. Lett., 34, L12301. DOI:10.1029/2007GL029842
Del Gaudio, V., and J. Wasowski, 2011: Advances and problems in understanding the seismic response of potentially unstable slopes. Eng. Geol., 122, 73-83
Deutsch C. V., and A. G. Journel, 1998: Geostatistical software library and user’s guide, Oxford University press, 369 pp.
Dixon, T., 1991: An introduction to the global positioning system and some geological applications. Rev. Geophys., 29(2), 249-276, DOI: 10.1029/91RG00152.
ElGharbawi, T. and M. Tamura, 2015a: Coseismic and postseismic deformation estimation of the 2011 Tohoku earthquake in Kanto Region, Japan, using InSAR time series analysis and GPS. Remote Sens. Environ., 168, 374-387. DOI: 10.1016/j.rse.2015.07.016.
ElGharbawi, T. and M. Tamura, 2015b: Estimating deformation due to soil liquefaction in Urayasu city, Japan using permanent scatterers. ISPRS J. Photogramm., 109, 152-164. DOI: 10.1016/j.isprsjprs.2015.09.002.
Ferretti, A., C. Prati, and F. Rocca, 2000: Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens., 38(5), 2202-2212. DOI: 10.1109/36.868878
Ferretti, A., C. Prati, and F. Rocca, 2001: Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sensing., 39(1), 8-20. DOI: 10.1109/36.898661.
Fielding, E. J., M. Talebian, P. A. Rosen, H. Nazari, J. A. Jackson, M. Ghorashi, and R. Walker, 2005: Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. J. Geophys. Res., 110, B03302. DOI: 10.1029/2004JB003299.
Galloway, D., K. Hudnut, S. Ingebritsen, S. Phillips, G. Peltzer, F. Rogez, and P. Rosen, 1998: Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour. Res., 34(10), 2573-2585. DOI: 10.1029/98WR01285.
Galloway, D. L., and T. J. Burbey, 2011: Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology J., 19(8), 1459-1486. DOI:10.1007/s10040-011-0775-5.
Giraudi, C., and M. Frezzotti, 1995: Palaeosesmicity in the Gran Sasso Massif (Abruzzo, central Italy). Quat. Int., 25, 81–95.
Gomba, G., R. F. Gonzalez, and F. D. Zan, 2017: Ionospheric phase screen compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR modes. IEEE Trans. Geosci. Remote Sens., 55(1), 223-235. DOI: 10.1109/TGRS.2015.2481079.
Hasanuddin, Z. A., R. Djaja, D. Darmawan, S. Hadi, A. Akbar, H. Rajiyowiryono, Y. Sudibyo, I. Meilano, M. A. Kasuma, J. Jahar, and C. Subarya, 2001: Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat. Hazards, 23, 365-387. DOI: 10.1023/A:1011144602064.
Hoffmann, J., H. Zebker, and D. L. Galloway, 2001: Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour. Res., 37(6), 1551-1566. DOI: 10.1029/2000WR900404.
Hoffmann, J., D. L. Galloway, and H. A. Zebker, 2003: Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. Res., 39(2), 1031-1444. DOI: 10.1029/2001WR001252.
Hooper, A., H. Zebker, P. Segall, and B. Kampes, 2004: A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett., 31(23), 1-5. DOI: 10.1029/2004GL021737.
Hooper, A., P. Segall, and H. Zebker, 2007: Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J. Geophys. Res., 112(B7), B07407. DOI: 10.1029/2006JB004763.
Hooper, A., 2008: A multi?temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett., 35(16). DOI: 10.1029/2008GL034654.
Hsu, M.T., 1971: Seismicity of Taiwan and some related problems. Bull. Int. Inst. Seismol. Earthq. Eng. Jpn., 8, 41-160.
Hsu, T. Y., H. H. Wang, P. Y. Lin, C. M. Lin, C. H. Kuo, and K. L. Wen, 2016: Performance of the NCREE’s on-site warning system during the 5 February 2016 Mw 6.53 Meinong earthquake. Geophys. Res. Lett., 43, 8954-8959. DOI:10.1002/2016GL069372.
Huang, H. H., Y. M. Wu, T. L. Lin, W. A. Chao, J. B. H. Shyu, C. H. Chan, and C. H. Chang, 2011: The preliminary study of the 4 March 2010 Mw 6.3 Jiasian, Taiwan Earthquake Sequence. Terr. Atmos. Ocean. Sci., 22(3), 283-290. DOI: 10.3319/TAO.2010.12.13.01(T).
Huang, M. H., H. Tung, E. J. Fieldong, H. H. Huang, C. Liang, C. Huang, and J. C. Hu, 2016: Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophys. Res. Lett., 43, 7459-7467. DOI:10.1002/ 2016GL069351.
Hung, W. C., C. Hwang, C. P. Chang, J. Y. Yen, C. H. Liu, and W H. Yang, 2010: Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environ. Earth Sci., 59(7), 1535-1548. DOI: 10.1007/s12665-009-0139-9.
Hung, W. C., C. Hwang, Y. A. Chen, C. P. Chang, J. Y. Yen, A. Hooper, and C. Y. Yang, 2011: Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ., 115, 957-967. DOI: 10.1016/j.rse2010.11.007.
Hwang, C., W. C. Hung, and C. H. Liu, 2008: Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Nat. Hazards, 47(1), 1-16. DOI:10.1007/s11069-007-9211-5.
Isaaks, E. H., and R. M. Srivastava, 1989: An introduction to applied geostatistics, Oxford University press, 561 pp.
Ishitsuka, K., T. Tsuji, and T. Matsuoka, 2012: Detection and mapping of soil liquefaction in the 2011 Tohoku earthquake using SAR interferometry. Earth Planets Space, 64, 1267-1276. DOI: 10.5047/eps.2012.11.002.
Iwasaki, T., T. Arakawa, and K. I. Tokida, 1984: Simplified procedures for assessing soil liquefaction during earthquakes. Soil Dyn. Earthq. Eng., 3(1), 49-58.
Kang, C. C., C. P. Chang, L. Siame, and J. C. Lee, 2015: Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan. J. Asian Earth Sci., 105, 408-417. DOI: 10.1016/j.jseaes.2015.02.013
Kuo-Chen, H., K. X. Chen, W. F. Sun, C. W. Ho, Y. H. Lee, Z. K. Guan, C. C. Kang, and W. Y. Chang, 2017: 3D Vs ambient noise tomography of the 2016 Mw 6.4 Meinong Earthquake source region in Taiwan. Terr. Atmos. Ocean. Sci., 28(5), 693-701. DOI: 10.3319/TAO.2016.12.28.01.
Le Beon, M., M. H. Huang, J. Suppe, S. T. Huang, E. Pathier, W. J. Huang, C. L. Chen, B. Fruneau, S. Baize, K. E. Ching, and J. C. Hu, 2017: Shallow geological structures triggered during the Mw 6.4 Meining earthquake, southwestern Taiwan. Terr. Atmos. Ocean. Sci., 28(5), 663-681. DOI: 10.3319/TAO.2017.03.20.02.
Lee, C. W., Z. Lu, and H. S. Jung, 2012: Simulation of time-series surface deformation to validate a multi-interferogram InSAR processing technique. Int. J. Remote Sens., 33(22), 7075-7087.
Lee, S. J., T. Y. Yeh, and Y. Y. Lin, 2016: Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, Earthquake: A synergy effect of source rupture and site amplification. Seismol. Res. Lett., 87(6), 1319-1326. DOI: 10.1785/0220160082.
Lee, Y. T., Y. J. Wang, C. H. Chan, and K. F. Ma, 2017: The 2016 Meinong earthquake to TEM PSHA2015. Terr. Atmos. Ocean. Sci., 28(5), 703-713. DOI: 10.3319/TAO.2016.12.28.02.
Lin L. H., H. R. Lin, A. H. W. Ke, and T. H. Chou, 1992: Petroleum potential of the Pre-Miocene Formations in the Chianan Plain, Taiwan. Petrol. Geol. Taiwan, 27, 177-197.
Liu, C. W., W. S. Lin, C. Shang, and S. H. Liu, 2001: The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. Environ. Geol., 40(4), 518-527. DOI: 10.1007/s002540000193.
Lin C. W., 2013. Geological map of Taiwan scale 1:50,000 - Qishan Sheet, Vol.56 (in Chinese); Central Geological Survey, Ministry of Economic Affairs: New Taipei City, Taiwan, R.O.C., 2013; pp. 93, ISBN: 978-986-03-7077-5.
Liu, C. H., Y. W. Pan, J. J. Liao, C. T. Huang, and S. Ouyang, 2004: Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environ. Geol., 45(8), 1154-1166. DOI: 10.1007/s00254-004-0983-6.
Liu, Y. and D. C. Helm, 2008: Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 2. Field application. Water Resour. Res., 44, W07424. DOI: 10.1029/2007WR006606.
Liu, G., S. M. Buckley, X. Ding, Q. Chen, and X. Luo, 2009: Estimating spatiotemporal ground deformation with improved permanent-scatterer radar interferometry. IEEE Trans. Geosci. Remote Sensing., 47 (9), 3209-3219. DOI: 10.1109/TGRS.2009.2028797.
Lu, C. H., C. F. Ni, C. P. Chang, Y. A. Chen, and J. Y. Yen, 2016: Geostatistical data fusion of multiple type observations to improve land subsidence monitoring resolution in the Choushui River Fluvial Plain, Taiwan. Terr. Atmos. Ocean. Sci., 27(4), 505-520. DOI: 10.3319/TAO.2016.01.29.02(ISRS).
Massonnet. D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993: The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138-142. DOI: 10.1038/364138a0.
Massonnet, D. and K. Feigl, 1998: Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys., 36(4), 441-500. DOI: 10.1029/97RG03139.
Michetti, A. M., F. Brunamonte, L. Serva, and E. Vittori, 1996: Trench investigations of the Fucino earthquake fault scarps (Abruzzo, central Italy): geological evidence of large historic events. J. Geophys. Res. 101(B3), 5921–5936.
National Land Surveying and Mapping Center (NLSC), 2015: Land Use Investigation Maps (in Chinese); National Land Surveying and Mapping Center, Ministry of the Interior: Taichung, Taiwan, R.O.C., 2015. Available from National Geographic Information System website, http://tma.geospatial.org.tw
Noppadol, P. W., P. H. Giao, and P. Nutalaya, 2006: Land subsidence in Bangkok, Thailand. Eng. Geol., 82, 187?201. DOI: 10.1016/j.enggeo.2005.10.004.
Rau, R. J. and W. T. Liang, 2017: Introduction to the special issue on the 2016 Meinong, Taiwan, earthquake. Terr. Atmos. Ocean. Sci., 28(5), I-III. DOI: 10.3319/TAO.2017.06.07.01.
Reilinger, R. E., G. P. Citron, and L. D. Brown, 1977: Recent vertical crustal movements from precise leveling data in southwestern Montana, western Yellowstone National Park, and the Snake River Plain. J. Geophys. Res., 82(33), 5349-5359. DOI: 10.1029/JB082i033p05349.
Rosen, P. A., S. Hensley, H. A. Zebker, F. H. Webb, and E. J. Fielding, 1996: Surface deformation and coherence measurements of Kilauea Volcano,Hawaii, from SIR-C radar interferometry. J. Geophys. Res., 101(E10), 23109-23125.
Rosen, P. A., S. Hensley, I. R. Joughin, F. K. Li, S. N. Madsen, E. Rodriguez, and R. M. Goldstein, 2000: Synthetic aperture radar interferometry. Proc. IEEE, 88(3), 333-382.
Sandwell, D. T. and E. J. Price, 1998: Phase gradient approach to stacking interferograms. J. Geophys. Res., 103(B12), 30183-30204.
Sandwell, D., R. Mellors, X. Tong, M. Wei, and P. Wessel, 2011a: GMTSAR: An InSAR processing system based on generic mapping tools. UC San Diego: Scripps Institution of Oceanography. Retrieved from: http://escholarship.org/uc/item/8zq2c02m.
Sandwell, D., R. Mellors, X. Tong, M. Wei, and P. Wessel, 2011b: Open radar interferometry software for mapping surface deformation. Eos Trans. AGU, 92(28). DOI: 10.1029/2011EO280002.
Santoro, M., U. Wegmuller, J. I. Askne, 2010: Signatures of ERS-Envisat interferometric SAR coherence and phase of short vegetation: An analysis in the case of maize fields. IEEE Trans. Geosci. Remote Sens., 48(4), 1702-1713.
Sato, H. P., K. Abe, and O. Ootaki, 2003: GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan. Eng. Geol., 67, 379–390. DOI: 10.1016/S0013-7952(02)00221-1.
Simons, M., Y. Fialko, and L. Rivera, 2002: Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as inferred from InSAR and GPS observations. Bull. Seismol. Soc. Am., 92(4), 1390-1402.
Suppe, J., 1984: Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21-33.
Takeuchi, S., Y. Suga, C. Yonezawa, and A. J. Chen, 2000: Detection of urban disaster using InSAR: A case study for the 1999 great Taiwan earthquake. In Proceedings of the IEEE IGARSS, Honolulu, HI, USA, 24-28 July 2000, 339-341.
Tantianuparp, P., X. Shi, L. Zhang, T. Balz, and M. Liao, 2013: Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens., 5, 2704-2719. DOI: 10.3390/rs5062704.
Teng, L., 1990: Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76. DOI: 10.1016/0040-1951(90)90188-E.
Tsai, C. C., S. Y. Hsu, K. L. Wang, H. C. Yang, W. K. Chang, C. H. Chen, and Y. W. Hwang, 2017a: Geotechnical reconnaissance of the 2016 ML6.6 Meinong earthquake in Taiwan. J. Earthq. Eng. DOI: 10.1080/13632469.2017.1297271.
Tsai, M. C., T. C. Shin, K. W. Kuo, 2017b: Pre-seismic strain anomalies and coseismic deformation of Meinong earthquake from continuous GPS. Terr. Atmos. Ocean. Sci., 28(5), 763-785. DOI: 10.3319/TAO.2017.04.19.01.
Tung, H., and J. C. Hu, 2012: Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. DOI: 10.1016/j.tecto.2012.08.009.
Wasowski, J., 1998: Understanding rainfall-landslide relationships in man-modified environments: a case-history from Caramanico Terme, Italy. Environ. Geol., 35(2-3), 197-209.
Wasowski, J. and V. Del Gaudio, 2000: Evaluating seismically induced mass movement hazard in Caramanico Terme (Italy), Eng. Geol., 58, 291-311
Wasowski, J., V. Del Gaudio, D. Casarano, P. Lollino, and S. Muscillo, 2013: Local scale seismic landslide susceptibility assessment based on historic earthquake records combined with accelerometer monitoring and ambient noise data, in: Earthquake-Induced Landslides, edited by: Ugai, K., Yagi, H., and Wakai, A., Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu (Japan), 7–9 November, 2012, Springer, 11– 20. DOI: 10.1007/978-3-642-32238-9 2, 2013
Wen, S., Y. L. Yeh, Y. Z. Chang, and C. H. Chen, 2017: The seismogenic process of the 2016 Meinong earthquake, southwest Taiwan. Terr. Atmos. Ocean. Sci., 28(5), 651-662. DOI: 10.3319/TAO.2017.02.17.01.
Wessel, P. and W. H. F. Smith, 1998: New, improved version of Generic Mapping Tools released. Eos Trans., AGU, 79(47), 579. DOI: 10.1029/98EO00426.
Westaway, R., 1992: Seismic moment summation for historical earthquakes in Italy: tectonic implications. J. Geophys. Res. 97(B11), 15437–15464.
Wu, Y. M., W. T. Liang, H. Mittal, W. A. Chao, C. H. Lin, B. S. Huang, and C. M. Lin, 2016: Performance of a low-cost earthquake early warning system (P-Alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismol. Res. Lett., 87(5), 1050-1059. DOI: 10.1785/0220160058.
Wu, Y. Y., J. C. Hu, G. P. Lin, C. P. Chang, H. Tung, and C. H. Lu, 2013: Transient active deformation in Tainan tableland using persistent scatterers SAR interferometry. BSGF, 184(4-5), 441-450. DOI: 10.2113/gssgfbull.184.4-5.441.
Yen, J. Y., K. S. Chen, C. P. Chang, and S. M. Ng, 2006: Deformation and “deformation quiescence” prior to the Chi-Chi earthquake evidenced by DInSAR and groundwater records during 1995-2002 in Central Taiwan. Earth Planets Space, 58, 805-813.
Yen, J. Y., K. S. Chen, C. P. Chang, W. M. Boerner, 2008: Evaluation of earthquake potential and surface deformation by differential interferometry. Remote Sens. Environ., 112(3), 782-795. DOI: 10.1016/j.rse.2007.06.012.
Yen, J. Y., C. H. Lu, C. P. Chang, A. J. Hooper, Y. H. Chang, W. T. Liang, T. Y. Chang, M. S. Lin, and K. S. Chen, 2011: Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using Persistent Scatterer and Small-Baseline SAR Interferometry. Terr. Atmos. Ocean. Sci., 22(3), 291-304. DOI: 10.3319/TAO.2010.10.25.01(TT).
Yu, S. B. and H. Y. Chen, 1994: Global positioning system measurements of crustal deformation in the Taiwan arc-continent collision zone. Terr, Atmos. Ocean. Sci., 5(4), 477-498.
Yu, S. B., H. Y. Chen, and L. C. Kuo, 1997: Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. DOI: 10.1016/S0040-1951(96)00297-1.
Zebker, H. A. and J. Villasenor, 1992: Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens., 30(5), 950-959.
Zebker, H. A., P. A. Rosen, and S. Hensley, 1997: Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res., 102(B4), 7547-7563.
指導教授 倪春發 張中白(Chuen-Fa Ni Chung-Pai Chang) 審核日期 2018-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明