博碩士論文 101022002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.144.17.45
姓名 王元才(Yuan-Tsai, Wang)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用多光譜遙測影像進行線性及非線性 水深反演模式之探討
(Log-linear and Nonlinear Inversion Model for Bathymetry in Multispectral Remote Sensing Images)
相關論文
★ 利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測★ 可調式都卜勒主動雷達校正器之改良研究
★ 基於色彩校正的遙測影像變遷偵測★ 應用階層式親和力傳播理論進行高光譜影像分類
★ 遙測影像中雲及其陰影的移除及雲高估計★ 龜山島周圍海域熱液與地震的關係
★ 利用穿牆連續波雷達分析人體步態的微都卜勒效應★ 新穎的混合式角反射器法於全極化合成孔徑雷達校正
★ 非線性像元分解考慮多次反射應用於高光譜影像★ 使用MODIS偵測地溫異常-熱異常和地震的相關性
★ 多光譜遙測影像自動偵測城市道路★ 地球同步衛星觀測資料之雲區像素辨識
★ 結合掩星折射率與高光譜紅外線觀測之大氣溫溼度垂直剖面反演★ 應用遙測影像之水深校正於東沙環礁海草棲地變遷
★ 基於SAR的數值高程模型的定性與定量分析★ 應用多時期向日葵8號衛星影像進行雲像素的偵測與追蹤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
水深測量一直都是先進國家致力發展的重要技術。尤其對海岸與海洋管理、航運計畫和環境保育都是關鍵的基礎資訊。台灣地處歐亞大陸與太平洋之間是為亞太海運的樞紐航道,同時週邊海域也是全球海洋生態的熱點。水下地形對我們在進行相關環境保育及管理決策時是重要的依據。近年來由於設備及資訊科學的進步,測深技術也得到了快速的進展。
在本論文中,我們採用了福衛二號所拍攝到的澎湖本島南方海域影像為素材,並以船測水深為參考,以線性及非線性的演算法針逆推藍光及綠光在水中衰減的數學模式,藉此得到之水深估計及誤差估計結果。
在本研究的結果可以看出在淺水環境中,線性的估算結果比非線性的結果要較準確。在深水環境中,非線性的估算結果則比線性有更好的準確性。在比較兩組不同時期衛星影像分別以對數線性及非線性反演之後,對數線性演算結果的穩定性明顯高於非線性的結果。
同時我們也可以看得出在水深估算結果上有明顯的海水表面反射效應,在深水區尤其明顯。我們因此提出了以近紅外做為針對兩種演算模式的水深校正法。對於此校正方式,線性估算模式的穩定性明顯優於非線性。
本研究亦嘗修正衛星影像之潮位差,結果與未修正之結果差異不大,只有對非線性的結果有數公分之改進。
在本研究中,我們可以明顯看出線性及非線性的對水深估算的優劣所在,因此我們也根據其均方根誤差提出結合兩者的可行性方案,以增加其精確度。
摘要(英) Abstract
Bathymetry is fundamental and vital task to coastal and marine management, navigational planning, and scientific studies of marine environments for Taiwan due to the hinge position. There are many algorithms proposed in bathymetry estimation recently due to the advance development on computing and instrument technology.
We adopted the well-known log-linear and nonlinear inversion model to estimate the water depth of the area in southern of Pengho Island in our study. The blue band and green band images are captured by FORMOSAT-2 multispectral sensor and the ground truth is surveyed with shipborne sounding. The result is affected by the surface reflection. The surface reflectance effect is shown for both models, especially in deep water area. Thus, we proposed a spectral correction based on the NIR band.
In our estimation, the log-linear model derives accurate results than nonlinear model in shallow water area. On the other hand in deep water area, the nonlinear model performs better.
From the RMS of the estimation, the log-linear is more stable than nonlinear for the NIR spectral correction. In this study, it is illustrated as a practical method to combine the results from log-linear and nonlinear inversion model based on the vary RMS on estimated depth.
關鍵字(中) ★ 對數線性
★ 多光譜
★ 測深
★ Log-linear Inversion Model
關鍵字(英) ★ log-linear
★ Multispectral
★ Bathymetry
★ Nonlinear Inversion Model
論文目次 Contents
Abstract(Chinese) i
Abstract(English) ii
Contents iv
Content of Tables vi
Content of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The Flow Chart 2
1.3 The Thesis Organization 3
Chapter 2 Methodology 4
2.1 Introduction of Formosat-2 4
2.2 General Principle 5
2.3 Log-linear Inversion Model 8
2.4 Nonlinear Inversion Model 10
Chapter 3 Experiment 14
3.1 Ground Truth 14
3.2 Log Ratios of Blue and Green Band 18
3.3 Multispectral Reflectance 19
3.4 Log-linear and Nonlinear Inversion Model 20
3.5 The Spectral Reflectance and Sun Glint effect Correction 25
3.6 Tidal Correction 28
3.7 Combination of Log-linear and Nonlinear Model 30
3.8 The Real Image Scene 32
3.9 The Terrain Analysis 35
Chapter 4 Conclusion and Future Work 37
Reference 39
參考文獻 Reference
[1]Lyzenga, D. R., Malinas, N. P. and Tanis, F. J., 2006, Multispectral athymetry Using a Simple Physically Based Algorithm, IEEE Trans. Geosci. And Remote Sens., vol. 44, no. 8, pp. 2251–2259.

[2]Mishra, D., Narumalani, S., Rundqulst, D. and Lawson, M., 2006. Benthic habitat mapping in tropical marine environments using QuickBird multispectral data. Photogrammetric Engineering & Remote Sensing 72:1037–1048.

[3]Kao, H. M., Ren, H., Lee, C. S., Chang, C. P., Yen, J. Y. and Lin, T. H., 2009,Determination of Shallow Water Depth Using Optical Satellite Images, Int. J. of Remote Sens., vol. 30, no. 23, December 2009, 6241–6260

[4]Melsheimer, C. and Chin, L. S., 2002, Extracting Bathymetry from Multi-temporal SPOT images, Asian J. of Geoinfomatics, 3, pp. 37-42.

[5]Stumpf, R. P. and Holderied, K., 2003. Determination of Water Depth with High-resolution Satellite Imagery over Variable bottom types, Limnol. Oceanogr., 48 pp.547-556.

[6]Su, H., Liu, H. and Heyman, W. D., 2008, Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model, Marine Geodesy, 31 pp.281-298.

[7]Press, W. H., Clark, S. A., Vetterling, W. T. and Flannery, B. P., 2002. Numerical recipes, 2nd ed. New York: Cambridge University Press.

[8] Formosat- 2 Introduction Webpage:
https://directory.eoportal.org/web/eoportal/satellite-missions/f/formosat-2

[9]WMO/CIMO, 1981, Abridged Final Report of the Eighth Session, 590 (Mexico: WMO)

[10]Jensen, J. R. 2007. Remote sensing of the environment: An earth resource perspective, 2nd ed. Upper Saddle River, NJ: Prentice Hall.
[11]Kao, H. M., Ren, H., and Lee, C. S., 2008, Analysis of a shallow water environment by multispectral satellite images using a subpixel classification algorithm, J. of Applied Remote Sens. Vol. 2, 023536

[12]LIDAR introduction webpage:
http://www.fugro-pelagos.com/lidar/tech/lidar_bathy.html

[13] Lyzenga, D., R. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics 17:379–383.

[14]SeaBat 8125 webpage:
http://www.teledyne-reson.com/products/seabat/seabat-8125/

[15] IHO Published Standard S-44_5E:
http://www.iho.int/iho_pubs/standard/S-44_5E.pdf,p.8 and p.15

[16]Green, E. P., Mumby, P. J., Edwards, A. J., and Clark, C. D., 2000. Remote sensing handbook for tropical coastal management. Paris: A. J. Edwards, UNESCO.

[17] Central Weather Bureau webpage:
http://www.cwb.gov.tw/V7/climate/monthlyData/mD.htm

[18]Su,W., Charlock, T. P., and Rutledge, K., 2002,Observations of reflectance distribution around sunglint from a coastal ocean platform, Appl. Opt., Vol. 41, No. 35, pp. 1-15

[19]Gatebe, Charles K., King, M. D., Lyapustin, A. I., Arnold, G. T., Redemann, J., 2005: Airborne Spectral Measurements of Ocean Directional Reflectance. J. Atmos. Sci., 62, 1072–1092.

[20]Smith, R. C. and Baker, K. S., 1981, Optical Properties of the Clearest Natural Waters (200- 800 nm), Appl. Opt. Vol. 20, No. 2, pp. 177-184.
指導教授 任玄(Hsuan Ren) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明