博碩士論文 101022006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.207.240.230
姓名 李思儀(SZU-I LEE)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 雷達干涉測量的大氣效應修正: 應用於印度西喜馬拉雅地區
(Atmospheric Correction in InSAR Measurement: A Study Case from the Western Himalayas, India)
相關論文
★ 應用Landsat MSS/TM & ETM 影像偵測湄公河的變遷★ 應用雷達干涉法在彰化縣員林地區地層下陷研究
★ 合成孔徑雷達影像之地形線形特徵萃取★ 應用太空大地測量法探討台南地區之地表變形
★ 應用地形分析方法研究台灣中央山脈東翼地表抬升★ 利用衛星影像萃取近岸地形-以台灣北部為例
★ 台灣西南部前陸地區演育與古應力分析★ 桃園臺地群地表變形與地下構造之研究
★ 應用永久散射體差分干涉法觀測台灣北部地區之地表變形★ 台灣東部縱谷南端之活動構造研究
★ Seismic hazard assessment in Taiwan: Insights from historical seismicity and radar interferometry analyses★ 應用ASTER影像於南蒙古戈壁沙漠區之地表礦物辨識
★ 台北盆地及周圍山區之現今地表變形研究★ 利用永久性散射體差分干涉法探討台南地區之地殼形變
★ 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定★ 莫拉克風災山崩區域之地質構造與大地應力分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著近幾年來遙測技術的發展,雷達差分測量已經成功的應用在觀測地表變形,此技術有幾項特性,例如可不受氣候與日夜影響拍攝,且因為雷達影像的圖幅及衛星的軌道週期,使得此技術可以大範圍及快速的觀測,並基於合成孔徑雷達影像,此技術可以取得高精度的地表形變到達釐米級的結果。但是此技術存在著一些誤差影響,其中一項就是我們主要探討的大氣效應,在雷達波傳遞經過大氣層時會受到水氣影響,而對於C波段雷達影像的差分測量,大氣濕延遲的影響劇烈,因此本研究對於雷達差分測量的大氣效應做修正,並應用於印度西喜馬拉雅區域。本研究使用兩個方法去修正大氣效應: (1) 利用光學影像的水氣資料對雷達差分測量做修正 (2) 利用一時間系列的雷達差分測量得到較穩定的雷達回波資訊,再利用對時間的高通濾波及空間的低通濾波去估計去除雷達差分測量的誤差效應。印度西喜馬拉雅地區位於歐亞板塊及印度板塊逆衝擠壓帶,造成此地區的複雜構造且地表活動較劇烈,研究區域位於印度西喜馬拉雅地區的北阿坎德邦的中南部,此地區的構造包含了因板塊擠壓造成的系列逆衝斷層及轉型斷層等,但因此地區的植被覆蓋、GPS及地震資料缺乏和研究較少,以至於此區域的地表形變量難以測量,因此我們利用修正大氣效應後的雷達差分測量研究此區域的地表形變,使用的影像為2008-2011年間的Envisat雷達影像與MODIS水汽資料,研究結果顯示此區域的大氣變化大約有0-20百分比且濕延遲結果在平地的影響比山地大,而雷達差分測量利用這兩個方法去除大氣效應之後的結果可明顯的看出地表的形變以及可能因斷層構造的活動變化,最後我們對於大氣效應與雷達差分測量做一個敏感度測試,結果顯示出此影響不是呈線性的,在大氣資料1-2倍時較為影響,到大氣資料3倍時影響則相較少,因此我們知道大氣效應對雷達差分測量會有影響但有一定的限度。
摘要(英) Differential Interferometric Synthetic Aperture RADAR (DInSAR) technique has been successfully used to observe the surface deformation with the high spatial resolution. However, a major limitation for measurement is affected by atmospheric propagation delay due to the significant impact on microwave signals. To solve this problem, some methods have been proposed in the past decade years. (1) DInSAR technique combines the optical images to correct the atmospheric delay caused by water vapor. (2) Persistent Scatterer (PS) InSAR technique, which choose the stable scatterers with time series images, estimate and reduce the effects by processing high-pass filtering in time and low-pass filtering in space. The study area is in the Uttarakhand state of Western Himalaya, India, including the geologocal units of Lesser Himalaya, Siwalik Hills and the Ganga plain, India. Because the lack of reseaches and data, geodesy and seismic data, we applied previous techniques in our study area by using the Envisat and MODIS images during the period from 2008-2011. The difference of MODIS PWV between the date shows 0 – 20 percent change and the zenith wet delay maps shows larger value in plain area than the mountain area. After the process of using optical images, MODIS data, the values of displacement are decreased and the deformation pattern of along the Himalaya area is much more reliable. The PSInSAR result shows detail movement related to the tectonic. Both technique results successfully reveal obvious surface deformation, which may be related to the tectonic activity in the region. Final, the sensitivity test of DInSAR and atmospheric data shows the non-linear changes between the atmospheric data and DInSAR result. The atmosphere delay may affect the DInSAR result, but has upper limit.
關鍵字(中) ★ 雷達干涉測量
★ 大氣效應
★ 西喜馬拉雅
關鍵字(英) ★ InSAR
★ Himalaya
★ Atmospheric
論文目次 摘要 I
ABSTRACT II
誌謝 III
CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES VIII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BACKGROUND 5
2.1 Synthetic Aperture Radar System 5
2.2 Interferometry Synthetic Aperture Radar 5
2.2.1 Repeat-track interferometry 6
2.3 DInSAR 9
2.3.1 Two-pass DInSAR 10
2.3.2 DInSAR error alaysis 12
2.4 PSInSAR 14
2.4.1 PSInSAR method 16
2.5 DInSAR with atmospheric data 17
2.5.1 Atmospheric delay 19
2.5.2 Atmospheric delay effect analysis 21
2.6 Geology 22
2.6.1 Himalaya 22
2.6.2 Study area 24
CHAPTER 3 RESULTS 30
3.1 Flow Chart 30
3.1.1 PSInSAR 30
3.1.2 Atmospheric delay correct of DInSAR 31
3.2 Data and Software 33
3.2.1 Envisat satellite images 33
3.2.2 Digital Elevation Model (DEM) 33
3.2.3 Delft Institute for Earth-Oriented Space Research (DEOS) 34
3.2.4 Moderate Resolution Imaging Spectroradiometer (MODIS) 35
3.2.5 Software 36
(i) Repeat Orbit Interferometry PACkage (ROI_PAC) 36
(ii) Stanford Method of Persistent Scatterers (StaMPS) 36
3.3 Result 40
3.3.1 PSInSAR 40
3.3.2 Atmospheric delay correct of DinSAR 40
3.3.3 The results with tectonic 42
(i) PSInSAR 42
(ii) Atmospheric delay correct of DInSAR result. 43
3.3.4 Sensitivity Test 41
CHAPTER 4 DISCUSSION 51
CHAPTER 5 CONCLUSION 54
REFERENCES 56
APPENDIX 63
A.1 Atmospheric delay effect test in DInSAR 63
A.2 The global atmospheric models of European Center for Medium Range Weather Forecasts (ECMWF) 65
參考文獻 Ambraseys N. N., Jackson D., A note on early earthquakes in northern India and southern Tibet. Current Science 84, 570-582, 2003.
Arora B. R., Gahalaut V. K. and Kumar N., Structural control on alongstrike variation in the seismicity of the Northwest Himalaya. J Asian Earth Sci., 57, pp. 15-24, 2012.
Auden J. B., The geology of the Krol belt. Records of the Geological Survey of India 67, 357-454, 1934.
Bean B. R., Dutton E. J., Radio meteorology. New-York, Dover Publications, 1968.
Berardino P., Costantini M., Franceschetti G., Iodice A., Pietranera L., and Rizzo V., Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng. Geol. 68 (1-2), 31-51, 2003.
Berardino P., Fornaro G., Lanari R., and Sansosti E., A new algorithm for surface deformation monitoring based on small baseline differential interferograms, IEEE Trans. Geosci. Remote Sensing, vol. 40, pp. 2375-2383, Nov. 2002.
Bettinelli P., Avouac J. P., Flouzat M., Bollinger L., Ramillien G., Rajaure S., and Sapkota S., Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology, Earth Planet. Sci. Lett., 266(3-4), 332-344, 2008.
Bevis M. S., Businger S., Chiswell S., Herring T. A., Rocken C., Anthes R. A. and Ware R. H., GPS meteorology: Mapping zenith wet delays onto precipitablewater. J. Appl. Meteorol. 33, 379-386, 1994.
Bevis M., Businger S., Herring T. A., Rocken C., Anthes R. A., and Ware R. H., GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System, J. of Geophys. Res., 97 (D14), 15,787-15,801, 1992.
Bilham R., Larson K., Freymueller J., et al., GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 386, 61-64, 1997.
Bock O., Bouin M.-N., Walpersdorf A., Lafore J. P., Janicot S., and Guichard F., Comparison of GPS precipitable water vapour to independent observations and Numerical Weather Prediction model reanalyses over Africa, Q. J. R. Meteorol. Soc., in press, 2007.
Bollinger L., Avouac J. P., Cattin R. and Pandey M. R., Stress buildup in the Himalaya. J. Geophys. Res. 109, B11405, 2004.
Borel C. C., Clodius W. B., and Johnson J., Water vapor retrieval over many surface types, SPIE Proc., 2758, 218-228, 1996.
Chang C. P., Wang C. T., Chang T. Y., Chen K. S., Liang L. S., Pathier E., and Angelier J., Application of SAR interferometry to a large thrust deformation: the 1999 Mw=7.6 Chichi earthquake in central Taiwan Geophys. J. Int., 159 pp. 9-16, 2004.
Chen C. W. and Zebker H. A., Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, Journal of the Optical Society of America A, vol. 17, pp. 401-414, 2000
DeCelles P. G., Robinson D. M., and Zandt G., Implications of shortening in the Himalayan foldthrust elt for uplift of the Tibetan Plateau: Tectonics, v. 21, p. 1062–1087, 2002.
Demets C., Gordon R. G., Argus D. F., and Stein S., Current plate motions, Geophys. J. Int., 101(2), 425-478, 1990.
Elliott J. R., Biggs J., Parsons B., and Wright T., InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys. Res. Lett., 35(12), 2008.
Ferretti A., Prati C., and Rocca F., Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, Geoscience and Remote Sensing, IEEE Trans. Geosci. Remote Sens, 38(5), 2202-2212, 2000.
Ferretti A., Prati C., Rocca F., Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39 (1), 8-20, 2001.
Flentje H., Claude H., Elste T., Gilge S., Kohler U., Plass-Dulmer C., Steinbrecht W., Thomas W., Werner A., and Fricke W., The Eyjafjallajokull eruption in April 2010 detecion of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles, Atmos. Chem. Phys., 10, 10085-10092, 2010.
Frouin R., Deschamps P. Y. and Lecomte P., Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: Theory and airborne verification, J. Appl. Meteorol., 29, 448-460, 1990.
Gabriel A. K., Goldstein R. M. and Zebker H. A., Mapping small elevation changes over large areas: Differential radar interferometry. J. of Geophys. Res., 94: 9183-9191, 1989.
Gahalaut V. K., Major and great earthquakes and seismic gaps in the Himalayan arc. Golden Jubilee Memoir of Geological Society of India 66, 373-393, 2008.
Gansser A., The Geology of Himalayas. Inter-Science, New York, 1964.
Gao B. C. and Kaufman Y. J., Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) nearinfrared channels, J. Geophys. Res., 108(D13), 4389, 2003.
Gao B. C. and Goetz A. F. H., Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data, J. Geophys. Res., 95, 3549-3564, 1990.
Goldstein R. M. and Zebker H. A., Interferometric radar measurement of ocean surface currents. Nature 328: 707-709, 1987.
Goldstein R. M., Engelhardt H., Kamb B. and Frolich R. M., Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Sci. 262: 1525-1530, 1993.
Goldstein R. M., Zebker H. A. and Werner C. L., Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science 23: 713-720, 1988.
González P. J., and Palano M., Mt. Etna 2001 eruption: new insights into the magmatic system feeding and the mechanical response of the western flank from geodetic data, Journal of Volcanology and Geothermal Research, 274, 108–121, 2014.
Goswami P. K. and Deopa T., Quaternary block-tilting in southern Himalayan ranges of eastern Uttarakhand, India. Zeirschrift fiir Geomorphologie, 2013.
Goswami P. K. and Pant C. C., Geomorphology and Tectonics of Kota–Pawalgarh Duns, Central Kumaun Sub-Himalaya. Current Science 92, 685-690, 2007.
Goswami P. K., 2012. Geomorphic evidences of active faulting in the northwestern Ganga Plain, India: implications for the impact of basement structures. J. of Geosciences 16 (3), 289-299, 2012.
Goswami P. K., and Pant C. C., Tectonic evolution of Duns in Kumaun Sub-Himalaya, India: a remote sensing and GIS-based study. Int. J. of Remote Sensing 29, 4721-4734, 2008.
Goswami P. K., Pant C. C. and Pandey S., Tectonic controls on the geomorphic evolution of alluvial fans in the Piedmont Zone of the Ganga Plain, Uttarakhand, India. J. of Earth System Sci. 118, 245-259, 2009.
Hanssen R. F., Radar interferometry: data interpretation and error analysis. Kluwer Academic Press, Dordrecht, 2001.
Hashimi N. H. et al., J. Geol. Soc. India, 41, 91–104, 1993
Heim A., and Gansser A., Central Himalaya. Denkschr. Schweiz. Naturforsch. Ges. 73, 1-245, 1939.
Hoffmann J., The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems, Ph.D. thesis, Stanford University, 2003.
Hooper A., and Zebker H., Phase Unwrapping in Three Dimensions with Application to InSAR Time Series J. Optical Soc. of America., 24, 2737-2747, 2007
Hooper A., Segall P., and Zebker H., Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J. Geophys. Res., 112, B07407, 2007.
Hooper A., Zebker H., Segall P., and Kampes B., A new method for measuring deformation on volcanoes and other natural terrains using insar persistent scatterers. Geophys. Res. Lett. 31: L23611, 2004.
Jolivet R., Grandin R., Lasserre C., Doin M.-P. and Peltzer G., Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett., 38(17), 2011.
Joshi Mallickarjun and Tiwari A. N., Tectonic evolution of the Almora Nappe along the Chhara-Someshwar transect, Kumaun Himalaya. Current Trends in Geology 15, Part 3, Pages 191-202, 2005.
Kampes B. M., Displacement parameter estimation using permanent scatterer interferometry. Ph.D. Thesis, Delf University of Technology, Delf, Nertherlands, 2005.
Karunakaran C. and Ranga Rao A., Status of exploration for hydrocarbons in the Himalayan region – contribution to stratigraphy and structure. Journal of Geological Survey of India Publication 41, 1-66, 1979.
Kaufman Y. J., and Gao B.-C., Remote sensing of water vapor in the near IR from EOS/MODIS, IEEE Trans. Geosci. Remote Sens., 30, 871-884, 1992.
Kumar S., Wesnousky S. G., Rockwell T. K., Briggs R. W., Thakur, V. C., and Jayagondaperumal R., Paleoseismic evidence of great surface rupture earthquake along the Indian Himalaya. J. of Geophys. Res., 2006
Kumar S., Wesnousky S. G., Rockwell T. K., Ragona D., Thakur V. C. and Seitz G. G., Erthquake recurrence and rupture dynamics of Himalayan frontal thrust. Sci., 294, 2328-2331, 2001.
Larson K. M., Burgmann R., Bilham R. and Freymueller J. T., Kinematics of the India Eurasia collision zone from GPS measurements: Journal of Geophysical Research, v. 104, p. 1077-1093, 1999.
Li Z. H., Correction of Atmospheric Water Vapor Effects on Repeat-Pass SAR Interferometry Using GPS, MODIS and MERIS Data, Ph.D. dissertation, Department of Geomatic Engineering, University of London, London, England, 2005.
Li Z. H., Fielding E. J., Cross P. and Muller J. P., Interferometric synthetic aperture radar atmospheric correction: GPS topography-dependent turbulence model, J. geophys. Res., 111, B02404, 2006a.
Li Z. H., Fielding E. J., Cross P. and Muller J. P., Interferometric synthetic aperture radar atmospheric correction: medium resolution imaging spectrometer and advanced synthetic aperture radar integration, Geophys. Res. Lett., 33, L06816, 2006c.
Li Z. H., Muller J. P., Cross P., Albert P., Fischer J. and Bennartz R., Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements, Int. J. Remote Sens., 27(2), 349-365, 2006b.
Li Z. W., Ding, X. L, Huang C., Wadge G. and Zheng D.W., Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information, J. Atmos. Solar-Terres. Phys., 68, 1189-1194, 2006d.
Li Z., Muller J.-P. and Cross P., Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements, J. Geophys. Res., 108(D20), 4651, 2003
Lillie R. J., Johnson G. D., Yousuf M., Zamin A. S. H. and Yeats R. S., Structural development ithin the Himalayan foreland fold-and-thrust belt of Pakistan, in Beaumont, C., and Tankard, .J., eds., Sedimentary basins and basin forming mechanisms: Memoirs of the Canadian Society f Petroleum Geology, v. 12, p. 379-392, 1987.
Lyon-Caen H. and Molnar P., Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin: Tectonics, v. 4, p. 513-538, 1985.
Lyons S. and Sandwell D., Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterer, and stacking. J. of Geophys. Res., 108, B12047. doi: 10.1029/2002JB001831, 2003.
Massonnet D. and Feigl K. L., Interferometry and its application to changes in the earth’s surface. Rev Geophys 36(4):441-500, 1998.
Massonnet D., Briole P. and Arnaud A., Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375, 567-570, 1995.
Massonnet D., Feigl K., Rossi M. and Adrangna F., Radar interferometric mapping of deformation in the year after The Landers Earthquake, Nature, 369, 227-230, 1994
Massonnet D., Rossi M., Carmona C, et al., The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364: 138-142, 1993.
McQuarrie N., Robinson D., Long S., Tobgay T., Grujic D., Gehrels G. and Ducea M., Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system, Earth Planet. Sci. Lett., 272, 105-117, 2008.
Meigs A. J., Burbank D. W. and Beck R. A., Middle-late Miocene(>10 Ma) formation of the main boundary thrust in the western Himalaya. Geology, 23, 423-426, 1995.
Molnar P., A review of the seismicity and the rates of active underthrusting and deformation at the Himalaya. J. of Himalayan Geology 1, 131-154, 1990.
Nakata T., Actives faults of the Himalaya of India and Nepal. Geological Society of America Special Paper 232, 243-264, 1989.
Ni J. and Barazangi M., Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya. J. Geophys. 89, 1147-1163, 1984.
Onn F. and Zebker H. A., Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. J Geophys, 11: B09102, 2006.
Pant, P. D., Kothyari Girish C. and Luirei Khayingshing , Neotectonic Rejuvenation of the Garampani Fault and South Almora Thrust: Outer Kumaun, Lesser Himalaya, Uttarakhand, India, AAPG Int. Conference and Exhibition, Milan, Italy, 2011.
Paul A., Evaluation and Implications of Seismic Events in Garhwal-Kumaun Region of Himalaya. Journal Geological Society India, 76, 414-418, 2010.
Pedersen R. and Sigmundsson F., InSAR based sillmodel links spatially offset areas of deformation and seismicity for the 1994 unrest episode at Eyjafjallajo¨kull volcano, Iceland. Geophys. Res. Lett. 31, L14610, 2004.
Powers P. M., Lillie R. J. and Yeates R. S., Structure and shortening of the Kangra and Dehra Dun eentrants, Sub-Himalaya, India: Geological Society of America Bulletin, v.110, p. 1010-1027, 1998.
Puyssegur B., Michel R. and Avouac J. P., Tropospheric phase delay in InSAR estimated from meteorological model and multispectral imagery. J. Geophys. Res. 111 (B12), 7166-7174, 2007.
Raney, R. K., Synthetic aperture imaging radar and moving targets. IEEE Trans. Aero. Elect. Syst., vol. AE S-7, pp. 499-505, 1971.
Revercomb H. E., et al., The ARM program’s water vapor intensive observation periods: Overview, initial accomplishments, and future challenges, Bull. Am. Meteorol. Soc., 84, 217–236, 2003
Robinson D. M., DeCelles P. G. and Copeland P., Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models: GSA Bulletin, v. 118, p. 865-885, 2006.
Rogers A. and Ingalls R., Venus: mapping the surface reflectivity by radar interferometry. Sci., 165 pp 797-799., 1969. Graham L. C., Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62, 763-768., 1974.
Rolf Sidler, Kriging and conditional geostatistical simulation based on scaleinvariant covariance models. Zurich: Swiss Federal Institute of Technology Zurich: 12−16, 2003.
Rupke J., Stratigraphic and structural evolution of the Kumaun Lesser Himalaya. Sedimentary Geology, 11, 81-256, 1974.
Scharroo R. and Visser P., Precise orbit determination and gravity field improvement for the ERS satellites, J. of Geophysical Research, 103 (C4), 8113-8127, 1998.
Seeber L. and Armbruster J., Great detachment earthquakes along the Himalayan Arc and long-term forecasting. In: Simpson, D.W., Richards, P.G. (Eds.), Earthquake Prediction: An International Review, Maurice Ewing Series. American Geophysical Union, vol. 4. pp. 259-277, 1981.
Simmons A. J. and Gibson J. K., The ERA-40 project plan, ERA40 Proj. Rep. Ser. 1, 62 pp., Eur. Cent. for Medium-Range Weather Forecasts, Reading, U. K, 2000.
Smith E. K. and Weintraub S., The constants in the equation for atmospheric refractive index at radio frequencies. Proc. I.R.E. 41, 1035-1037, 1953.
Srivastava P. and Misra D. K., Morpho-sedimentary records of active tectonics at the Kameng river exit, NE Himalaya. Geomorphology 96(1-2): 187-198, 2008.
Srivastava P. and Mitra G., Thrust geometries and deep structure of the outer and Lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold‐and‐thrust belt, Tectonics, 13, 89-110, 1994.
Starkel L., Climatically controlled terraces in uplifting mountain areas. Quaternary Sci. Reviews 22: 2189-2198, 2003
Thai S. and Schonermark M. V., Determination of the column water vapor of the atmosphere using backscattered solar radiation measured by the Modular Optoelectronic Scanner (MOS), Int. J. Remote Sens., 19, 3223-3236, 1998.
Thakur V. C., Active tectonics of Himalayan Frontal Fault system Int. J. of Earth Sci. 102: 1791-1810, 2013
Thayer G. D., An improved equation for the radio refractive index of air. Radio Sci 9(10):803–807, 1974
Valdiya K. S., Dynamic Himalaya, University Press, Hyderabad, 1998.
Valdiya K. S., Himalayan transverse faults and folds and their parallelism with subsurface structures of north Indian plates. Tectonophysics, 32, 353-386, 1976.
Valdiya K. S., Reactivation of Himalayan Frontal Fault: implications. Current Sci. 85, 1031-1040, 2003.
Valdiya K. S., Reactivation of terrane-defining boundary thrusts in central sector of the Himalaya: implications. Current Science 81, 1418-1431, 2001.
Valdiya K. S., The two intracrustal boundary thrusts of the Himalaya. Tectonophysics 66, 323-348, 1980.
van Hinsbergen D. J. J., Straathof G. B., Kuiper K. F., Cunningham W. D., and Wijbrans R. J., No rotations during transpressional orogeny in the Gobi Altai: Coinciding Mongolian and Eurasian apparent polar wander paths, Geophys. J. Int., 173, 105-126, 2008.
Wang J., Zhang L. and Dai A., Global estimates of water-vaporweighted mean temperature of the atmosphere for GPS applications, J. Geophys. Res., 110, D21101, 2005.
Wesnousky S. G., Kumar S., Mohindra R. and Thakur V. C., Uplift and convergence along the Himalayan Frontal Thrust of India.Tectonics 18, 1999.
Wright T. J., Parsons B., England P. and Fielding E., InSAR observations of low slip rates on the major faults of western Tibet Science, 305 pp. 236-239, 2004.
Yamamoto J. K., Correcting the smooth effect of ordinary Kriging estimates. Mathematical Geology, 37(11): 69−94, 2005.
Zebker H. A., and Villasenor J., Decorrelation in interferometric radar echoes, IEEE Trans. Geosci. Remote Sens, 30(5), 950-95910.1109/36.175330, 1992.
Zebker H. A., Rosen P. A., and Hensley S., Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res, 102(B4), 7547-7563, 1997.
Zhuang L. W. and Wang S. L., Spatial Interpolation Methods of Daily Weather Data in Northeast China, J. of Applied Meteorological Sci., vol.14, no.5, pp.605-615, Oct. 2003.
張中白、王皓正、陳錕山,地震地質調查及活動斷層資料庫建置計畫-地殼變形研究計畫。經濟部中央地質調查所報告第92-10 號,2003.

指導教授 張中白(Chung-Pai Chang) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明