博碩士論文 101022605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:54.198.54.142
姓名 商樂民(Lamin B. Sanneh)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱
(Monitoring Urbanization in Metropolitan Taipei Using Multi-Temporal Landsat and SPOT Satellite Data)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在快速成長的都會區,能準確與及時地描述土地資源的性質、範圍與隨時間的變遷是重要的議題。都市的擴展是導致各種都市環境問題的主因之一,像是空氣品質下降、暴雨徑流增加與導致的洪水、熱島效應與水質惡化等。因此,為了提供準確與有用的資訊處理都市擴展後續引發的種種問題,有必要了解都市擴展的程度和趨勢。
本研究中,以台北都會區作為研究案例。利用該區域多時期Landsat-5 TM (Thematic Mapper)、Landsat-7 ETM (Enhanced Thematic Mapper)與SPOT-5多光譜影像,探討自1990年至2010年,20年間的都市擴展和地表變遷。本研究採用分類後比較法 (post-classification change detection algorithm),此演算法能使用不同時間點和不同感測器所獲得的衛星影像,提供分類成果的“From-To”差異圖 (difference maps)。
1990、2000、2010三個年度的水體、農地、林地與人造建物4項地表物分類整體精度平均為90.74%。並使用多時期的分類後比較法,比較1990年至2001年與2001年至2010年兩個區間的地表變遷。該差異圖顯示,自1990年至2010年間,人造建物增加了約總面積的16.19%,而林地覆蓋率則下降了14.45%,農業、草地與水體等地表類型也顯著地下降。由馬可夫細胞自動機 (Markov Cellular Automata, CA-Markov) 預測2020年的結果指出,都市人造建物將有進一步主要來自林地區域0.5% (3.49平方公里) 的擴展。研究成果量化了都會區地表變遷的模式,也驗證了使用多時期Landsat與SPOT影像,可以準確與經濟地達到分析與預測各時期地表變遷的目的,提供土地管理和決策所用。
摘要(英) The importance of accurate and timely information describing the nature and extent of land resources and changes over time is increasing, especially in rapidly growing metropolitan areas. Urban expansion is one of the main reasons responsible for a variety of urban environmental issues like decreased air quality, increased runoff and subsequent flooding, heat island effect, deterioration of water quality, etc. Therefore, it is essential to understand its extent and trend, in order to provide accurate and valuable information for dealing with subsequent issues.
In this work, metropolitan Taipei has been taken as a case study. The urban expansion and land cover change that took place within a span of 20 years i.e. from 1990, to 2010 has been studied, using multi-temporal Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM), and SPOT 5 multispectral data of the area. The post classification change detection algorithm was adopted in this study, since it has the ability of providing difference maps, from which the “From-To” change information can be generated using satellite images acquired at different times and from different sensors.
The overall four-class classification accuracies averaged 90.74 % for the three years, and a multi-date post-classification comparison change detection algorithm was used to determine changes in land cover at two intervals, 1990-2001, and 2001-2010. The maps showed that between 1990 and 2010, the amount of urban or built-up land increased by 16.19 % of the total area, while forest cover decreased by 14.45 %. Rural cover types of agriculture, which also includes grasslands along with water bodies have also declined significantly. The results from the 2020 Cellular Automata Markov (CA_Markov) projection indicated a further increase of 0.5% (3.49 km2) in the urban built-up class category, which is mainly contributed by forested areas. The results quantify the land cover change patterns in the metropolitan area and also demonstrate the potential of multi-temporal Landsat and SPOT data to provide an accurate, and economical means to map, analyze and project changes in land cover over time that can be used as inputs to land management and policy making.
關鍵字(中) ★ 遙感探測
★ 多時期
★ 土地利用與土地覆蓋
★ 變遷偵測
關鍵字(英) ★ Remote Sensing
★ Multi-Temporal
★ Land Cover
★ Change Detection
論文目次 Chinese Abstract ................................................................................................................................... v
Abstract ................................................................................................................................................. vi
Dedication ............................................................................................................................................ vii
Acknowledgement ............................................................................................................................... viii
List of Figures ....................................................................................................................................... xi
List of Tables ....................................................................................................................................... xii
Chapter One - Introduction ..................................................................................................................1
1.1 Background Study ..............................................................................................................................1
1.2 Statement of Problem .........................................................................................................................2
1.3 Justification for the Study ..................................................................................................................7
1.4 Aims and Objectives ..........................................................................................................................7
1.5 Study Area .........................................................................................................................................7
Chapter Two - Literature Review .........................................................................................................9
2.1 Conceptualizing Sprawl and Urbanization .........................................................................................9
2.2 Key factors of Urbanization in the Taipei Metropolis .................................................................... 10
2.2.1 Industrialization ............................................................................................................................ 10
2.2.2 The Xinyi Planning District ......................................................................................................... 11
2.2.3 Transportation Infrastructure ........................................................................................................ 12
2.3 Sustainability and Environmental Concerns of Urbanization ......................................................... 13
2.4 Remote Sensing for Monitoring Urban Sprawl ............................................................................... 14
Chapter Three - Materials and Methodology ................................................................................... 17
3.1 Materials ......................................................................................................................................... 19
3.2 Image Preprocessing ....................................................................................................................... 21
3.3 Image classification ......................................................................................................................... 24
3.4 Change Detection ............................................................................................................................ 26
3.5 Projection using CA_Markov Chain Analysis ................................................................................ 27
3.6 Classification Accuracy Assessment ............................................................................................... 28
Chapter Four - Results and Discussion ............................................................................................. 30
4.1 Classification accuracy assessment ................................................................................................. 30
4.2 Classification Maps ......................................................................................................................... 31
4.2.1 Land cover Classification Map for Landsat 5 TM (1990) ............................................................ 31
4.2.2 Land Cover Classification Map for Landsat 7 ETM (2001) ........................................................ 32
4.2.3 Land Cover Classification Map for SPOT 5 (2010) ..................................................................... 34
4.3 Classification Change Map Statistics (“From-To” analysis)........................................................... 35
4.3.1 Land Cover Change Detection and Analysis for 1990-2001 ........................................................ 35
x
4.3.2 Land Cover Change Detection and Analysis for 2001-2010 ........................................................ 40
4.3.3 Land Cover Change Detection and Analysis for 1990-2010 ........................................................ 44
4.4.1 Markov Projection for 2020 ......................................................................................................... 45
4.4.2 Validation for the CA_Markov Projection Model ....................................................................... 47
4.4.3 Expected Land Cover in 2020 ...................................................................................................... 49
4.4.4 Spatial Trend of the Expected Changes from 2010 to 2020 ......................................................... 52
4.5 Societal-Economic Factors for Built-up Expansion ........................................................................ 54
Chapter Five - Conclusions ................................................................................................................ 56
References ........................................................................................................................................... 59
參考文獻 Adamatzky, A. I. (1994). Hierarchy of fuzzy cellular automata. Fuzzy Sets and Systems, 62(2), 167-174.
Adger, W. N., Huq, S., Brown, K., Conway, D., & Hulme, M. (2003). Adaptation to climate change in the developing world. Progress in development studies, 3(3), 179-195.
Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964): US Government Printing Office.
Angel, S., Sheppard, S., Civco, D. L., Buckley, R., Chabaeva, A., Gitlin, L., . . . Perlin, M. (2005). The dynamics of global urban expansion: Citeseer.
Bailey, W. G., Oke, T. R., & Rouse, W. (1997). Surface Climates of Canada (Vol. 4): McGill-Queen′s Press-MQUP.
Beaumont, C. E. (1999). Challenging sprawl: organizational responses to a national problem: a report by the National Trust for Historic Preservation for the Henry M. Jackson Foundation: National Trust for Historic Preservation.
Bekele, H., & Lind, H. (2005). Urbanization and urban sprawl. Master of Science Thesis(294).
Belal, A., & Moghanm, F. (2011). Detecting urban growth using remote sensing and GIS techniques in Al Gharbiya governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 14(2), 73-79.
Bhatta, B. (2010). Analysis of urban growth and sprawl from remote sensing data: Springer.
Boone, C. G., & Fragkias, M. (2012). Urbanization and Sustainability: Linking Urban Ecology, Environmental Justice and Global Environmental Change (Vol. 3): Springer.
Chang, S.-C., & Lee, C.-T. (2006). Ozone variations through vehicle emissions reductions based on air quality monitoring data in Taipei City, Taiwan, from 1994 to 2003. Atmospheric Environment, 40(19), 3513-3526.
Chen, T. C., Wang, S. Y., & Yen, M. C. (2007). Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. J. Appl. Meteor, 46, 1324-1340.
Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699-714.
Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Review ArticleDigital change detection methods in ecosystem monitoring: a review. International journal of remote sensing, 25(9), 1565-1596.

Couch, C., Petschel-Held, G., & Leontidou, L. (2007). Urban sprawl in Europe: Wiley Online Library.
Dodman, D. (2009). Urban density and climate change. Analytical Review of the Interaction between Urban Growth Trends and Environmental Changes Paper, 1.
Elvidge, C. D., Sutton, P. C., Wagner, T. W., Ryzner, R., Vogelmann, J. E., Goetz, S. J., . . . Imhoff, M. L. (2004). Urbanization Land Change Science (pp. 315-328): Springer.
Epsteln, J., Payne, K., & Kramer, E. (2002). Techniques for mapping suburban sprawl. Photogrammetric engineering & remote sensing, 63(9), 913-918.
Fang, S., Gertner, G. Z., Sun, Z., & Anderson, A. A. (2005). The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landscape and urban planning, 73(4), 294-306.
Huang, S.-L., & Chen, L.-L. (2002). Urban Indicators as Measurements of Taiwan’s Sustainability. Paper presented at the Forum on Urbanizing World and UN Human Habitat II.
Huang, S.-L., Wang, S.-H., & Budd, W. W. (2009). Sprawl in Taipei’s peri-urban zone: Responses to spatial planning and implications for adapting global environmental change. Landscape and urban planning, 90(1), 20-32.
Islam, M. S., & Ahmed, R. (2011). Land use change prediction in Dhaka city using GIS aided Markov chain modeling. Journal of Life and Earth Science, 6, 81-89.
Jat, M. K., Garg, P., & Khare, D. (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International journal of Applied earth Observation and Geoinformation, 10(1), 26-43.
Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective: Prentice-Hall Inc.
Jones, G. W., & Douglass, M. (2008). Mega-urban regions in Pacific Asia: Urban dynamics in a global era: NUS Press.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174.
Lo, C., & Yang, X. (2002). Drivers of land-use/land-cover changes and dynamic modeling for the Atlanta, Georgia metropolitan area. Photogrammetric Engineering and Remote Sensing, 68(10), 1073-1082.
Long, H., Liu, Y., Wu, X., & Dong, G. (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su–Xi–Chang region: Implications for building a new countryside in coastal China. Land Use Policy, 26(2), 322-333.
López, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landscape and urban planning, 55(4), 271-285.
Memarian, H., Balasundram, S. K., Talib, J. B., Teh Boon Sung, C., Mohd Sood, A., & Abbaspour, K. C. (2013). KINEROS2 application for land use/cover change impact analysis at the Hulu Langat Basin, Malaysia. Water and Environment Journal, 27(4), 549-560.
Mon, W.-T. (2001). The Empirical Research on Crime Control Policy---Taiwan Experience.
Mondal, S. M., Sharma, N., Kappas, M., & Garg, P. K. (2013). Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques. Geocarto International, 28(7), 632-656.
Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers, 93(2), 314-337.
Pontius Jr, R. G., & Suedmeyer, B. (2004). Components of agreement between categorical maps at multiple resolutions. Remote sensing and GIS accuracy assessment, 233-251.
Rahman, A., Aggarwal, S. P., Netzband, M., & Fazal, S. (2011). Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 4(1), 56-64.
Reis, S. (2008). Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors, 8(10), 6188-6202.
Ridd, M. K., & Liu, J. (1998). A comparison of four algorithms for change detection in an urban environment. Remote sensing of environment, 63(2), 95-100.
Riebsame, W. E., Meyer, W. B., & Turner II, B. L. (1994). Modeling land use and cover as part of global environmental change. Climatic change, 28(1-2), 45-64.
Rimal, B. (2011). Urban growth and land use/land cover change of pokhara sub-metropolitan city, Nepal. Journal of Theoretical & Applied Information Technology, 26(2).
Rosen, C. M. (2010). Urban Sprawl, Global Warming, and the Empire of Capital. By George A. Gonzalez. Albany: State University of New York Press, 2009. vii+ 162 pp. Bibliography, notes, index. Cloth, $60.00. ISBN: 978-0-791-49389-2. Business History Review, 84(02), 427-429.


Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3), 938-943.
Serra, P., Pons, X., & Sauri, D. (2003). Post-classification change detection with data from different sensors: some accuracy considerations. International Journal of Remote Sensing, 24(16), 3311-3340.
Seto, K. C., & Fragkias, M. (2005). Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape ecology, 20(7), 871-888.
Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28-41.
Sharma, M., Yadav, K., Prawasi, R., & Hooda, R. (2013). Land use/land cover change detection using gis techniques: A case study of bhiwani district. Journal of Environmental Science and Sustainability (JESS) Vol. 1 (4): (2321-5577), 124 – 128.
Soule, D. C. (2006). Urban sprawl: a comprehensive reference guide: Greenwood Publishing Group.
Squires, G. D. (2002). Urban sprawl and the uneven development of metropolitan America. Urban sprawl: Causes, consequences, and policy responses, 1-22.
Sudhira, H., Ramachandra, T., & Jagadish, K. (2004). Urban sprawl: metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29-39.
Takada, T., Miyamoto, A., & Hasegawa, S. F. (2010). Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landscape ecology, 25(4), 561-572.
Torrens, P. M. (2001). Can geocomputation save urban simulation? Throw some agents into the mixture, simmer and wait.
Torrens, P. M., & Alberti, M. (2000). Measuring sprawl (CASA Working Papers 27), Centre for Advanced Spatial Analysis (UCL): London, UK. .
Vogelmann, J. E., Helder, D., Morfitt, R., Choate, M. J., Merchant, J. W., & Bulley, H. (2001). Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus radiometric and geometric calibrations and corrections on landscape characterization. Remote Sensing of Environment, 78(1), 55-70.

Wang, C.-H., Lin, W.-Z., Peng, T.-R., & Tsai, H.-C. (2008). Temperature and hydrological variations of the urban environment in the Taipei metropolitan area, Taiwan. Science of the total environment, 404(2), 393-400.
Williams, J., & Chang, C. A.-Y. D. (2008). Taiwan′s environmental struggle: toward a green silicon island: Routledge.
World Health Organization. (2010). World health statistics 2010: World Health Organization.
Yao, I., Wang, Y., & Chia, Y. (2013). Distribution of Groundwater Contaminants at the RCA Taoyuan Plant. Paper presented at the AGU Fall Meeting Abstracts.
Yuan, D., Elvidge, C. D., & Lunetta, R. S. (1998). Survey of multispectral methods for land cover change analysis.
Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote sensing of Environment, 98(2), 317-328.
指導教授 蔡富安(Fuan Tsai) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明