博碩士論文 101187005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.218.184.214
姓名 黃元彥(Yuan-Yen Huang)  查詢紙本館藏   畢業系所 學習與教學研究所
論文名稱 機器人學習活動的協作歷程、情境知識之探究:以樂高機器人之分組學習課程為例
(The Collaborative Practice and Situated Knowledge of Robotics Learning Activities: As an example of Lego Mindstorm Activity)
相關論文
★ 自我效能與STEM樂高機器人課程對國民小學六年級學生學習成效與學習態度之影響★ 偏鄉小學學伴在英語線上課業輔導的學習滿意度、學習態度和學習成果
★ 網路同儕評量回饋功能及自我調制歷程之研究★ 數位遊戲設計之教學模式建構
★ 樂高機器人多媒體教材設計、發展與可用性評估★ 桃園縣青少年網路閱讀動機與網路閱讀行為之相關研究
★ 專題式合作學習在教育桌上遊戲設計課程之應用-以師資培育學生為例★ 國小學生對桌上遊戲接受度之相關分析—以大富翁遊戲為例
★ 網路討論區評鑑指標發展及應用★ 台灣青少年學習者於機器人學習活動的動機策略探究-以WRO機器人競賽為例
★ 資訊科技融入教學實踐歷程之行動敘說--以國小低年級閱讀與寫作為例★ 創意思考螺旋教學策略對國小學童學習效果之研究
★ 一位數學家教老師 如何資訊融入專業知能發展★ 成語教學導入桌遊對國中八年級學生之影響
★ 遊戲化華語教學之研究—以創意思考螺旋融入教育桌遊為例★ 歌曲教學法、傳統教學法對EFL學習者 英語聽力成效差異
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究乃執行兩項不同期程的樂高機器人學習之行動研究,研究者在同時擔任樂高機器人教學者執行課程活動的學習時,並同時藉由問卷調查、參與式觀察、學習評量等資料來源,掌握不同學習場域下,樂高創客新手們所建構出來的情境知識、所形塑的互動實踐歷程,藉以提出108課綱科技領域的機器人學習課程活動規劃、鷹架引導上的討論與建議。
  研究一的研究對象為桃園市中壢區A國小的168名四年級、五年級的創客,在為期七周的樂高機器人NXT課程活動後,進行自編的「機器人運算思維問卷」施測。經過探索性因素分析後,共萃取出四項機器人運算思維構念:機器人設計與規劃、機器人學習的挫折感、機器人問題解決與模組化、機器人合作學習。並以單因子多變量變異數分析來檢驗性別、性別分組於四項機器人運算思維構念上的表現差異。研究二的研究對象為桃園市八德區B國中的20名七年級的體育班學生,在為期兩週的機器人課程活動中,以研究者針對108課綱科技領域的核心素養所自行發展的樂高機器人EV3課程與探究式教材作為研究工具,讓創客們於兩階段的學習活動中,最後於小組內共同完成其機器人的產品設計。
研究最後針對創客新手們於個人機器人運算思維、科技小組共創之素養導向學習,提出課程設計、學習脈絡上的探討。並針對創客小組於科技共同協作的活動中,如何促進其組內的同儕討論與互動,將提出課程活動設計、教學引導、鷹架工具的使用建議。
  本研究貢獻為開發機器人運算思維量表之學習評量工具,並試圖針對108課綱科技領域的核心素養,發展素養導向的機器人課程活動設計以及機器人探究教材。
摘要(英) This study conducted two different periods of the action research for Lego Mindstorm learning activities. In order to propose the guidelines of the curriculum design and the scaffolding strategies for Technology domain of 108 Outline, The researcher in this study, also as an robotics instructor, collected some data to realize the Lego makers’ situated knowledge and learning practice via questionnaire, participant observation and the evaluation.
The participants of the study 1 were 168 4th and 5th elementary school Lego makers from Chunli city. The makers involved in accembling, programming and problem solving during the 7 weeks of Lego Mindstorm-NXT courses. On the last day of the robotics learning, they filled out the questionnaire, Computational Thinking Scale of Robotics, which was adapted from the factor structure of Computational Thinking Scale. After EFA process, 4 factors, Robotics design, Robotics learning frustration, Problem solving and modeling, and Robotics collaboration, were extracted in Computational Thinking Scale of Robotics. According to MONOVA, the study found that gender and grouping strategy would have some effect on the robotics computational thinking. The participants of the study 2 were 20 7th junior high school Lego makers of sports expertise from Bade city. According to the curriculum guidances of 108 Outline in Technology domain, the courses of Lego Mindstorm EV3 and the inquiry learning materials were developed as the research tools for the two weeks learning. After the two sessions of the robotics inquiry learning, the makers from each group finished their own Lego designs.
The paper discussed the management of the learning context for Robotics Computational Thinking as a novice maker in Lego robotics learning. Besides, the paper also proposed some suggestion of how to improve peer learning in the group technological collaboration.
The contribution of the paper is focused on developing the learning inventory, Computational Thinking Scale of Robotics, and the curriculum design of Competency Orientation as well as the inquiry materials for the robotics learning accroding to Technology domain of 108 Outline.
關鍵字(中) ★ 機器人學習活動
★ 協作實踐
★ 情境知識
★ 機器人運算思維
★ 素養導向課程設計
★ 機器人探究式教材
關鍵字(英) ★ robotics learning
★ collaborative practice
★ situated learning
★ computational thinking of robotics
★ competency orientation of curriculum design
★ robotics inquiry learning materials
論文目次 目次
目次 VIII
表次 IX
圖次 X
第一章 緒論……………………………………………………………………...1
第一節 研究背景與動機…..…………………………………………………….1
第二節 研究目的與問題意識.....................6
第三節 名詞釋義………………………………………………………………......7
第二章 文獻探討………………………………………………………………............10
第一節 機器人學習活動的學習理論與教育背景………………10
第二節 機器人學習活動的教學實踐….……………………………….14
第三節 樂高創客社群的情境知識與學習實踐……………………32
第三章 研究方法………………………………………………………………............41
第一節 研究架構與研究方法………………………………………………….41
第二節 研究場域與研究對象………………………………………………….42
第三節 課程規劃與教材設計………………………………………………..47
第四節 研究工具……………………………………………………………….....54
第五節 資料分析……………………………………………………………..........66
第四章 研究結果.................................68
第一節 樂高機器人運算思維的調查與落實.............68
第二節 樂高機器人課程模組與教材開發的實施成效..76
第五章 結論、討論與建議..........................94
第一節 結論.................................94
第二節 討論…………………………………………………………….……...... 99
第三節 建議.........................................111
參考文獻
一、中文部分…….……………………………………….…………………......113
二、英文部分….…………………………………………………………….......116
附 錄..............................................119
參考文獻 一、中文文獻
CAVEDU教育團隊技術部落格(2013年7月23日)。到底要不要買EV3?取自http://blog.cavedu.com/到底要不要買EV3上/
王保進(2002)。視窗版SPSS與行為科學研究。臺北市:心理。
王裕德、陳元泰、曾鈴惠(2012)。機器人問題導向程式設計課程對女高中學生學習程式設計影響之研究。科學教育月刊,354,11-29。
李俊輝(2018)。教師如何將運算思維融入課程。科學研習,57(5),26-37。
吳木崑(2009)。杜威經驗哲學對課程與教學之啟示。臺北市立教育大學學報,40(1),35-54。
李春雄、台灣青少年機器人協會(2015)。機器人實作檢定:學、術科檢定題庫。臺北市:上奇資訊。
林生傳(2005)。教育社會學。高雄:巨流。
林竹芸(2017,7月)。和同伴一起玩出「創意執行力」。親子天下,91,94-97。
林清山(1992)。心理與教育統計學。台北:東華書局。
林育慈、吳正己(2016)。運算思維與中小學資訊科技課程。教育脈動,6。取自 https://pulse.naer.edu.tw/Home/Content/02287aac-dc26-4ad4-b87e-2881e942dc16?insId=40977899-d342-4f01-94a7-66d446c9d3bb
林邵珍(2003)。運用ARCS動機設計模式之生活科技 教學。生活科技教育月刊,36(4),52-59。
林羿瑄、黃元彥、劉旨峰、劉佩艷(2013,5月)。機器人教育應用之趨勢分析-以臺灣博碩士論文知識加值系統為例。第十七屆全球華人計算機教育應用大會(GCCCE 2013)。北京:北京大學。
林業盈(2015)。應用樂高機器人發展資優教育方案之教學實例分析與探討。資優教育季刊,137,33-44。
邱昱智、簡清華、呂政頡、陳宇廣、林雅楓、黃寶葵、黃俊榮(2011)。樂高機器人融入國小六年級速率課程教學之探討。2011第三屆科技與數學教育學術研討會論文集,820-829。
侯人俊(2011)。樂高機器人融入國小程式設計教學之研究。國立屏東教育大學資訊科學系碩士論文,屏東市。
施能木(2007)。應用機器人於國小學童「自然與生活科技」領域創意學習之課程設計與實施。生活科技教育,40(2),18-31。
洪詠善、范信賢(主編)(2015)。同行-走進十二年國民基本教育課程綱要總綱。新北市:國家教育研究院。
柴昌維、陳家驊(2014)。運用樂高機器人模組指導偏遠地區學童學習機器人設計課程之研究。2014福祉科技與服務管理國際研討會。南投市:南開科技大學。
張佩如(2014)。探索機器人學習活動之背景和經驗、動機、策略與成就相關性:以國小高年級學生為例。國立中央大學學習與教學所碩士論文,中壢市。
張佩如、劉旨峰、劉佩艷、陳春后、黃元彥、林俊閎(2014,5月)。學習動機、策略對於機器人學習成就之關聯性、預測力-以台灣國小六年級學生為例。第十八屆全球華人計算機教育應用大會(GCCCE 2014)。上海:華東師範大學。
張碧珠(譯)(2014)。能力混合班級的差異化教學(原作者:C. A. Tomlinson)。臺北市:五南(原出版年:2001)。
張輝誠(2015)。學、思、達:張輝誠的翻轉實踐。臺北市:親子天下。
張瀞文(2016)。程式設計入課綱,教育轉機或危機?親子天下76期。取自https://www.parenting.com.tw/article/5070133-程式設計入課綱,教育轉機或危機?/
教育部(2014)。十二年國民基本教育課程綱要總綱。臺北:教育部。
教育部(2016)。十二年國教國民基本教育國民中小學暨普通型高級中等學校科技領域綱要草案。臺北:教育部。
教育部(2018)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校科技領域綱要。臺北:教育部。
教育部國民及學前教育署(2013)。分組合作學習教學手冊。臺北:教育部。
郭至和(2016,12月)。以DFC的力量提升教師專業、改變教學世界。翻轉教育。取自:https://flipedu.parenting.com.tw/article/2736
陳怡靜、張基成(2015)。兩岸機器人教育的現況與發展。中等教育,66(3),37-59。
陳春后、劉旨峰、林俊閎(2015,5月)。自我效能與STEM樂高機器人課程對國民小學六年級學生學習成效與學習態度之影響。第十九屆全球華人計算機教育應用大會(GCCCE 2015)。台北:國立臺灣師範大學。
陳柏熹、宋曜廷(2018)。十二年國教新課綱素養評量實踐:從定義內涵到評量配套。十二年國教新課綱素養評量實踐研討會專題演講講稿,未出版。
連育德(譯)(2013)。自造者時代-啟動人人製造的第三次工業革命(原作者:C. Anderson)。臺北市:天下文化(原著出版年:2012)。
彭渰雯、莊喻清、何忻蓓(2016)。女性的科技參與:台灣與歐盟現況比較。科技、醫療與社會,22,225-274。
黃元彥、劉旨峰(2017)。偏鄉機器人合作學習活動設計-以南投縣偏鄉中學機器人社團為例。第二十一屆全球華人計算機教育應用大會(GCCCE2017)。北京市:北京師範大學。
黃元彥、劉旨峰、林俊閎(已接受)。機器人學習活動中的程式學習困境-以南投縣偏鄉機器人中學社團為例。數位學習科技期刊。
黃元彥、劉旨峰、林俊閎、蔡宗良、黃瓊葦(2011,11月)。學徒制中的知識分享與流通: 探討七年級中學生於機器人學習環境下的社群文化實踐。台灣數位學習發展研討會 (TWELF)。台北:東吳大學。
黃茂在、吳敏而(2016)。探索十二年國教自然科學教科書的設計原則-以「熱傳播」單元為例。教科書研究,9(2),69-100。
黃郁倫(譯)(2013)。學習共同體-構想與實踐(原作者:佐藤學)。臺北市:天下雜誌(原著出版年:2012)。
黃啟菱(2017)。新課綱下的未來老師樣貌。未來Family教育特刊:解讀12年國教新課綱。取自:https://ws.moe.edu.tw/001/Upload/23/relfile/8006/56203/93710b31-dc72-4194-b426-75833555b568.pdf
黃連興、許毓華、許天維(2014)。影響學生學業成就與網路使用行為之相關研究-以桃園縣一所國小為例。臺中教育大學學報:數理科技類,28(1),1-22。
黃國鴻、胡瑞城(2011)。運用Lego機器人媒介團體互動與學習:以程式設計為例。靜宜人文學報,5(2),147-182。
趙貞怡(2013)。原住民學童在電腦樂高機器人課程中的創造力與團隊合作能力。教育實踐與研究,26(1),33-62。
趙珩宇(2015)。自造者運動對生活科技的啟示。科技與人力教育季刊,1(3),1-20。
趙嘉浩、梁至中、蔡孟蓉(2017)。機器人課程教材鷹架對高中生未來關鍵學習能力的影響。數位學習科技期刊,9(3),95-114。
劉明洲(2017)。創客教育、運算思維、程式設計~幾個從「想」到「做」的課程與教學設計觀念。臺灣教育評論月刊,6(1),138-140。
蔡敦浩、李慶芳(2008)。情境知識的浮現:敘說半導體工程師的維修經驗。管理學報,25(6),699-716。
齊若蘭(譯)(2014)。第二次機器時代(原作者:E. Brynjolfsson, & A. McAfee)。台北市:天下文化。(原著出版年:2014)
鄭志誠(2018,3月)。如何落實108課綱中「科技領域」的核心素養-配合DFC是個選項。DFC台灣團隊部落格。取自: https://www.dfctaiwan.org/blog-article/3738fe43-ce3c-4169-a5d6-5355fbda2e18
戰強、閆彩霞、蔡堯(2010)。機器人教學改革的探索與實踐。現代教育技術,20(3),144-146。
藍偉瑩(2017)。素養導向課程設計初階工作坊。取自:http://health-nursing.lygsh.ilc.edu.tw/106/素養導向課程設計初階工作坊.pdf
簡立仁、楊靜怡、楊宜庭(2008)。科技教育的新方向-於中等學校電腦科學課程內整合機器人學程。科學教育月刊,314,39-47。

二、英文文獻
Anderson, C. (2012). Makers: The new industrial revolution. New York: Crown Business.
Allison, M., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming  experience promotes higher STEM motivation among first-grade girls. Journal of Experimental Child Psychology, 160, 92-106.
Baker, M., Hansen, T. G. B., Joiner, R., & Traum, D. (1999). The role of grounding in collaborative learning tasks. In P. Dillenbourg (Ed.), Collaborative learning : Cognitive and computational approaches (1st ed., pp. 31–63). Amsterdam; New York: Elsevier Science.
Barell, J. (1998). Problem-based learning: An inquiry approach. London, UK: Corwin Press.
Becker, J. P., & Plumb, C. (2018, June). Board 8: Identifying at-risk students in a basic electric circuits course using instruments to probe students’ conceptual understanding. Paper presented at 2018 American Society for Engineering Education Annual Conference & Exposition, Salt Lake City, Utah.
Bell, L. R., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction: Assessing the inquiry level of classroom activities. The Science Teacher, 72(7), 30-33.
Bernstein, B. (1971). ‟On the classification and framing of educational knowledge.” In Michael F. D. Young (Ed.), Knowledge and control: New directions for the sociology of education (pp.47-69). London: Collier-Macmillan Publishers.
Bransford, J. D., Brown, A. L., Cocking, R. R., Donovan, M. S., & Pellegrino, J. W. (2000). How people learn: Brain, mind, experience, and school. Washington, DC, US: National Academy Press.
Cremin, L. A. (1959). John Dewey and the Progressive-education movement, 1951-1952. The School Review, 67(2), 160-173.
Chaudhary, V., Agrawal, V., Sureka, P., & Sureka, A. (2016). An experience report on teaching programming and computational thinking to elementary level children using lego robotics education kit. In 2016 IEEE Eighth International Conference on Technology for Education (T4E), Powai, Mumbai, India.
Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Elthoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162-175.
Cheng, C. C., Huang, P. L., & Huang, K. H. (2013). Cooperative learning in Lego robotics projects: Exploring the impacts of group formation on interaction and achievement. Journal of Networks, 8(7), 1529-1535.
Chetty, J. (2015). Lego Mindstorms: Merely a toy or a powerful pedagogical tool for learning computer programming? Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), 111-118.
Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. In L. B. Rensnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Galser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Denning, P. J. (2009). The profession of IT. Beyond computational thinking. Communications of the ACM, 52(8), 28-30.
Dewey, J. (1938). Experience and education. New York: Macmillan.
Dewey, J. (1958). Experience and nature. New York: Dover publications.
Dillenbourg, P. (Ed.). (1999). Collaborative learning: Cognitive and computational approaches. Amsterdam, NL: Pergamon, Elsevier Science.
Edwards, D., & Potter, J. (1992). Discursive psychology. London: Sage.
Field, A. (2005). Reliability analysis. In: Field, A., Ed., Discovering Statistics Using spss. 2nd Edition, Sage, London.
Google (2015). Exploring Computational Thinking. Retrieved from https://www.google.com/edu/resources/programs/exploring-computational- thinking/
Hsiao, R. L., Tsai, D. H., & Lee, C. F. (2006). The problem of embeddedness: Knowledge transfer, coordination and reuse in information systems. Organization Studies, 27(9), 1289-1317.
Huang, K. H., Yang, T. M., & Cheng, C. C. (2013). Engineering to see and move: Teaching computer programming with flowcharts vs. Lego robots. Internatioal journal of educational technology (iJET), 8(4), 23-26.
Huang, Y. T., Liu, E. Z. F., Lin, C. H., & Liou, P. Y. (2017). Developing and Validating a High School Version of the Robotics Motivated Strategies for Learning Questionnaire. International Journal of Online Pedagogy and Course Design, 7(2), 20-34.
ISTE(2015). CT leadership toolkit. Available at: http://www.iste.org/docs/ct-documents/st-leadershipt-toolkit.pdf?sfvrsn=4.
Job, M. A., & Al Saeed, H. J. M. (2016). The impact of Lego Mindstorms NXT robot in science on sixth grade students in Bahrain. Computer Science & Information Technology (CS & IT), ,73-82.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31-36.
Keller, J. M. (1984). The use of the ARCS model of motivation in teacher training. In K. Shaw & A. J. Trott (Eds.), Aspects of Educational Technology Volume XVII: staff Development and Career Updating. London: Kogan Page.
Kelly, J. F. (2006). LEGO MINDSTORMS NXT: The Mayan Adventure. Apress.
Kerr, N. L., & Tindale, R. S. (2004). Group performance and decision making. Annual Review of Psychology, 55, 623–55. doi:10.1146/annurev.psych.55. 090902.142009
Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the Computational Thinking Scales (CTS). Computers in Human Behavior, 72, 558-569.
Kostova, T. (1999). Transformational transfer of strategic organizational practices: A contextual perspective. Academy of Management Review, 24(2), 308-324.
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University.
Lin, C. H., & Liu, E. Z. F. (2012, March). The effect of reflective strategies on students’ problem solving in robotics learning. Paper presented at International Conference on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL 2012), Takamtsu, Kagawa, Japan.
Lin, C. H., Liu, E. Z. F., & Huang, Y. Y. (2012). Exploring parents′ perceptions towards educational robots: Gender and socio-economic differences. British Journal of Educational Technology, 43(1), E31-E34.
Lin, C. H., Liu, E. Z. F., Kuo, C. H., Virnes, M., Sutinen, E., & Cheng, S. S. (2009). A case analysis of creative spiral instruction model and students′ creative problem solving performance in a Lego robotics course. Proceedings of Edutainment 2009: Learning by Playing, Game-based Education System Design and Development, 501-505.
Liu, E. Z. F. (2010). Early adolescents′ perceptions of educational robots and learning of robotics. British Journal of Educational Technology, 41(3), E44-E47.
Liu, E. Z. F., & Lin, C. H. (2010). The survey study of mathematics motivated strategies for learning questionnaire (MSLQ) for grade 10-12 Taiwanese students.
Turkish Online Journal of Educational Technology, 9(2), 221-233.
Liu, E. Z. F., Kou, C. H., Lin, C. H., Cheng, S. S., & Chen, W. T. (2008). Developing multimedia instructional material for robotics education. WSEAS Transactions on Communications, 7(11), 1102-1111.
Liu, E. Z. F., Lin, C. H., & Chang, C. S. (2010). Student satisfaction and self-efficacy in a cooperative robotics course. Social Behavior and Personality, 38(8), 1135-1146.
Liu, E. Z. F., Lin, C. H., Liou, P. Y., Feng, H. C., & Hou, H. T. (2013). An analysis of teacher-student interaction patterns in a robotics course for kindergarten children: A pilot study. The Turkish Online Journal of Educational Technology, 12(1), 9-18.
Lombardi, M. M. (2007). In D. G. Oblinger (Ed.), Authentic learning for the 21st century: An overview. EDUCAUSE Learning Initiative.
Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experience promotes higher STEM motivation among first-grade girls. Journal of Experimental Child Psychology, 160, 92-106.
Mitnik, R., Recabarren, M., Nussbaum, M., & Soto, A. (2009). Collaborative robotic instruction: A graph teaching experience. Computers & Education, 53, 330-342.
National Research Council. (2013). Next generation science standards: For states, by states.Washington, DC: National Academy Press.
Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill.
OECD (2018). The future of education and skills: education 2030: the future we want. OECD Position Paper, Paris, https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf (accessed on 04 May 2018).
Okita, S. Y. (2014). The relative merits of transparency: Investigating situations that support the use of robotics in developing student learning adaptability across virtual and physical computing platform. British Journal of Educational Technology, 45(5), 844-862.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
Papert, S. & Harel, I. (1991). Constructionism. Norwood, NJ: Ablex Publishing.
Pluciennik, M. (1999). Archaeological narratives and other ways of telling. Current Anthropology, 40(5), 653-678.
Resnick, M. (2007). Sowing the seeds for a more creative society. Learning & Leading with Technology, 35(4), 18–22.
Rollins, M. (2014). Beginning Lego Mindstorms EV3. US: Apress.
Roth, W. M., & Bowen, G. M. (1995). Knowing and interacting: A study of culture,
practices, and resources in a grade 8 open-inquiry science classroom guided by a
cognitive apprenticeship metaphor. Cognition and Instruction, 13(1), 73-128.
Sánchez, F., Morales, M., Londoño, J., Sánchez, C., & López, G. (2017). Using robotics to generate collaborative learning, through the CDIO initiative.
2017 13th International CDIO Conference in Calgary, Canada
Schubert, M., Buder, J., Rädle, R., & Hesse, F. H. (2015). Common ground and individual accountability in literature selection of groups: Three different group learning techniques. Proceedings of the Computer Supported Collaborative Learning (CSCL) Conference 2015, 499-503.
Selby, C. & Woollard, J. (2013). Computational thinking: The developing definition. Available: http://eprints.soton.ac.uk/356481 [Accessed 23-06-2014].
Somyürek, S. (2015). An effective educational tool: Construction kits for fun and meaningful learning. International Journal of Technology and Design Education, 25(1), 25-41.
Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 409-426). Cambridge, UK: Cambridge University Press.
Tracy, S. J. (2010). Qualitative quality: Eight ‟Big-Tent” criteria for excellent qualitative research. Qualitative Inquiry, 16(10), 837-851.
Toh, L. P. E., Causo, A., Tzuo, P. W., Chen, I. M., & Yeo, S. H. (2016). A review on the use of robots in education and young children. Journal of Educational Technology & Society, 19(2), 148-163.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New Brunswick and London: Aldine Transaction.
Granovetter, M. (1985). Economic Action and Social Structure: the Problem of Embeddedness. American Journal of Sociology, 91(3), 481-510.
Voyles, M. M., Fossum, T., & Haller, S. (2008), Teachers respond functionally to student gender differences in a technology course. Journal of Research in Science Teaching, 45(3), 322-345.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-36.
指導教授 劉旨峯(Eric Zhi-Feng Liu) 審核日期 2019-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明