博碩士論文 101221026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.235.30.155
姓名 徐偉烈(Wei-Lieh Hsu)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Parallel Domain Decomposition Method for the Finite Element Approximation of Two-dimensional Navier-Stokes Equations with Slip Boundary Condition)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般流體力學在做數值模擬時,通常採用無滑移邊界條件,然而近來部分的實驗卻證實了在微小尺度或其他狀態下可能與事實違和。許多學者提出可以使用滑移邊界條件來取而代之,如此更加能夠更加真實模擬出事實的模樣。所以我們推測滑移邊界條件會改變典型流體的模樣,故本篇論文在假設已知有滑移的狀態下,使用滑移邊界條件來進行數值模擬,來檢視滑移對流體產生改變。
在這篇論文中,我們先簡單介紹滑移邊界條件的背景以及我們所採用的模型,接著導出含邊界條件納維爾-史托克斯方程組的變分形式及使用牛頓-克雷洛夫-施瓦茨演算法解的大型稀稀疏非線性系統。我們使用一個具有解析解的例子來驗證我們的平行流體程式,並且我們將應用在頂部驅動穴流及突擴管流這兩個流體的基準問題上。我們藉由數值模擬來探究滑移對流體所影響的物理性質,例如發生分歧現象的雷諾數,以及分析解線性與非線性系統時的效能。
摘要(英) In general, we usually impose the no-slip boundary condition when simulating the problem of fluid dynamics. But recently, some experimental evidences this condition is not applicable in small-scale system or other situations. Many researchers propose to use the slip boundary condition instead. Then the result would be consistent with real appearance. Thus, we speculate the typical appearance would change when we apply the slip boundary condition. Therefore, we assume there exist slip behavior. We simulate with slip boundary condition to observe the difference between no-slip.
In this thesis, we first introduce the background of slip boundary condition and the model we used. Then we derive the variational formulation of the Navier-Stokes equation with the slip boundary condition and the resulting large, sparse nonlinear system of equations is solved by the parallel Newton-Krylov-Schwarz algorithm. We validate our parallel fluid code by considering a test case with an available analytical solution. We apply parallel Galerkin/least squares finite element flow code with the slip boundary condition to two benchmark problems -- lid-driven cavity flows and sudden expansion flows. We investigate numerically how the slip condition effects the physical behavior of the fluid flows, including the critical Reynolds number for the pitchfork bifurcation and the performance of the nonlinear and linear iterative methods for solving resulting linear sparse nonlinear system of equations.
關鍵字(中) ★ 有限元素
★ 納維爾-史托克斯
★ 滑移邊界條件
關鍵字(英) ★ Domain Decomposition
★ Finite Element
★ Navier-Stokes
★ Slip Boundary Condition
論文目次 Tables ix
Figures xi
1 Introduction 1
2 Navier-Stokes equations with slip boundary condition and their
variational formulation 5
3 Solution algorithm 9
3.1 Galerkin/least-square finite element formulation 9
3.2 Basis functions of slip boundaries 10
3.3 Pseudo-transient Newton-Krylov-Schwarz method 13
3.4 Software development 14
4 Numerical results and discussion 15
4.1 Code validation 15
4.2 Applications 21
4.2.1 Lid-driven cavity flows 21
4.2.2 Sudden expansion flows 28
4.3 Implementation performance 42
5 Conclusions and future works 44
Bibliography 45
Appendix A 47
Appendix B 48
Appendix C 52
參考文獻 [1] ParaView homepage. http://www.paraview.org/.
[2] CUBIT homepage. https://cubit.sandia.gov/, 2008.
[3] M. P. Brenner E. Lauga and H. A. Stone. In Microfluidics: The No-Slip Boundary Condition, chapter 15. J. Foss, C. Tropea and A. Yarin and Springer, 2005.
[4] L.P. Franca and S.L. Frey. Stabilized finite element methods. II: The incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 99(2-3):209–233, 1992.
[5] Q. He and X.-P. Wang. Numerical study of the effect of Navier slip on the driven cavity flow. Zeitschrift für Angewandte Mathematik and Mechanik, 68:856–871, 2012.
[6] G. Pineau J.-L. Guermond, C. Migeon and L. Quartapelle. Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1 : 1 : 2 at Re = 1000. Journal of Fluid Mechanics, 450:169–199, 2002.
[7] V. John. Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations – numerical tests and aspects of the implementation. Journal of Computational and Applied Mathematics, 147:287–300, 2002.
[8] V. John and A. Liakos. Time-dependent flow across a step: the slip with friction boundary condition. International Journal for Numerical Methods in Fluids, 50:713–731, 2006.
[9] G. Karypis. METIS web page. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.
[10] A. Kundt and E. Warburg. On friction and thermal conductivity in rarefied gases. Philosophical Magazine, 50:53, 1875.
[11] J. C. Maxwell. On the condition to be satisfied by a gas at the surface of a solid body. Scientific Papers, 2:704, 1879.
[12] C.L. Navier. Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris., 6:389–416, 1823.
[13] T. Mullin R.M. Fearn and K.A. Cliffe. Nonlinear flow phenomena in a symmetric sudden expansion. Journal of Fluid Mechanics, 211:595–608, 1990.
[14] W. D. Gropp D. Kaushik M. G. Knepley L. C. McInnes B. F. Smith S. Balay, K. Buschelman and H. Zhang. PETSc users manual. Technical Report ANL- 95/11 - Revision 3.5, Argonne National Laboratory, 2014.
[15] W. D. Gropp D. Kaushik M. G. Knepley L. C. McInnes B. F. Smith S. Balay, K. Buschelman and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc/, 2014.
[16] D. Keyes R. Melvin X.-C. Cai, W. Gropp and D. Young. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation. SIAM Journal on Scientific Computing, 19:246–265, 1998.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明