博碩士論文 101221027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.204.189.171
姓名 胡浩鈞(Eric Haujuan Hu)  查詢紙本館藏   畢業系所 數學系
論文名稱 平行血流模擬使用非牛頓模型的數值研究
(A Numerical Study on Parallel Hemodynamics Simulation Using Non-Newtonian Model)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 模擬血液在血管裡的行為有助於醫療人員或研究學者對心血管疾病掌握相關資訊,並降低手術的風險以及協助手術計畫。此篇論文中,我們使用Carreau-Yasuda模型模擬非牛頓流體以及牛頓流體在三維的血流模擬問題,包括long straight artery problem、end-to-side anastomosis probelm,以及針對個別病患所造出的pulmonary
artery probelm。在離散化方面,對於空間上的離散使用stabilized finite element method,而時間上的離散則使用implicit backward Euler finite difference method,於每一離散時間點,我們採用Newton-Krylov-Schwarz algorithm 解非線性系統。此篇
論文我們藉由比較以兩種不同流體為基礎的血流模擬,進而證實非牛頓流體在血流模擬的重要性,更決定了在複雜血管模型之下,非牛頓流體為不可或缺的條件。
摘要(英) Numerical simulation of blood flow in the arteries becomes an invaluable tools to help both of the physicians to plan the surgery procedure to reduce the risk of surgery and the researchers to understand the cardiovascular diseases. To ease the numerical difficulties of blood flow simulation, blood is often assumed to be Newtonian fluid as the first approximation. However, the shear thinning effect is significant in large arteries due to the dramatic change of the shear stress during a cardiac cycle and the non-homogeneous
properties of blood. Moreover, the recirculation happens frequently in the low shear rate region. To compute accurately the wall shear stress that provides more useful information to predict the formation of intimal hyperplasia, it is necessary to take the rheological
effect of blood flows in to account. In this study, the non-Newtonian blood flows in different complexity of artery were numerically investigated by using 3D fully parallel incompressible fluid solver. Our fluid solver is developed based on generalized Newtonian fluid model, where the viscosity is the function of rate of strain tensor. More specifically, the more commonly-used model for blood flow simulation, the Carreau-Yasuda model,
compared with Newtonian model are reported, including the investigation how the wall shear stress distribution and the streamlines and pressure distribution depend on different physiological conditions and arterial geometries.
關鍵字(中) ★ 血流模擬
★ 非牛頓流體
★ 數值方法
關鍵字(英) ★ Hemodynamics simulation
★ non-Newtonian fluid
★ Numerical Method
論文目次 1 Introduction (p.1)
2 Mathematical model and parallel solution algorithm (p.6)
2.1 Governing Equations and Boundary Conditions. (p.6)
3 Solution algorithm (p.10)
3.1 Spatial and temporal discretizations (p.10)
3.2 Newton-Krylov-Schwarz algorithm (p.12)
4 Numerical results and discussion (p.14)
4.1 Test cases (p.14)
4.2 Grid convergence test (p.18)
4.3 Local and Global non-Newtonian importance factor (p.19)
4.4 Parametric study (p.24)
5 Concluding remarks (p.30)
Bibliography (p.31)
參考文獻 [1] F. Loth. Velocity and wall shear measurements inside a vascular graft model under
steady and pulsatile flow conditions. 1993.
[2] G. B. Thurston. Viscoelasticity of human blood. Biophysical journal, 12(9):1205–
1217, 1972.
[3] Hughes T. J. Taylor, C. A. and C. K. Zarins. Finite element modeling of blood flow
in arteries. Computer Mrthods in Applied Mechanics and Engineering, 158(1):155–
196, 1998.
[4] J. Kwack and A. Masud. A stabilized mixed finite element method for shear-rate
dependent non-newtonian fluids: 3d benchmark problems and application to blood
flow in bifurcating arteries. Computational Mechanics, 53(4):751–776, 2014.
[5] Johnston P. R. Corney S. Johnston, B. M. and D. Kilpatrick. Non-newtonian blood
flow in human right coronary arteries: steady state simulations. Journal of Biome-
chanics, 37(5):709–720, 2004.
[6] E. W. Merrill. Rheology of blood. Physiol. Rev, 49(4):863–888, 1969.
[7] Y. I. Cho and K. R. Kensey. Effects of the non-newtonian viscosity of blood on flows
in a diseased arterial vessel. part 1: Steady flows. Biorheology, 28(3-4):241–262,
1990.
[8] D. A. Steinman Ballyk, P. D. and C. R. Ethier. Simulation of non-newtonian blood
flow in an end-to-side anastomosis. Biorheology, 31(5):565–586, 1993.
[9] F. J. Walburn and D. J. Schneck. A constitutive equation for whole human blood.
Biorheology, 13(3):201–210, 1976.
[10] Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer,
1993.
[11] Johnston P. R. Corney S. Johnston, B. M. and D. Kilpatrick. Non-newtonian blood
flow in human right coronary arteries: transient simulations. Journal of Biomechan-
ics, 39(6):1116–1128, 2006.
[12] Shirani E. Razavi, A. and M. R. Sadeghi. Numerical simulation of blood pulsatile
flow in a stenosed carotid artery using different rheological models. Journal of
Biomechanics, 44(11):2021–2030, 2011.
[13] Lu X. Y. Chen, J. and W. Wang. Non-newtonian effects of blood flow on hemody-
namics in distal vascular graft anastomoses. Journal of Biomechanics, 39(11):1983–
1995, 2006.
[14] B. Liu and D. Tang. Influence of non-newtonian properties of blood on the wall
shear stress in human atherosclerotic right coronary arteries. Molecular & Cellular
Biomechanics: MCB, 8(1):73, 2011.
[15] VandeVord P. J. Kim, Y. H. and J. S. Lee. Multiphase non-newtonian effects on
pulsatile hemodynamics in a coronary artery. International Journal for Numerical
Methods in Fluids, 58(7):803–825, 2008.
[16] Van de Vosse F. N. Gijsen, F. J. H. and J. D. Janssen. The influence of the nonnewtonian
properties of blood on the flow in large arteries: steady flow in a carotid
bifurcation model. Journal of Biomechanics, 32(6):601–608, 1999.
[17] Vishnoi R. Srivastava, V. P. and P. Sinha. Response of a composite stenosis to nonnewtonian
blood in arteries. 2015.
[18] Van de Vosse F. N. Gijsen, F. J. H. and J. D. Janssen. Wall shear stress in backwardfacing
step flow of a red blood cell suspension. Biorheology, 35(4):263–279, 1998.
[19] Hatami J. Hatami, M. and D. D. Ganji. Computer simulation of mhd blood conveying
gold nanoparticles as a third grade non-newtonian nanofluid in a hollow porous
vessel. Computer Methods and Programs in Biomedicine, 113(2):632–641, 2014.
[20] Rahman S. U. Gulzar M. M. Nadeem S. Ellahi, R. and K. Vafai. A mathematical
study of non-newtonian micropolar fluid in arterial blood flow through composite
stenosis. Appl. Math, 8(4):1567–1573, 2014.
[21] Y. Wu and X. C. Cai. A fully implicit domain decomposition based ale framework
for three-dimensional fluid–structure interaction with application in blood flow computation.
Journal of Computational Physics, 258:524–537, 2014.
[22] Bracco A. Kim G. E. Imparato, A. M. and R. Zeff. Intimal and neointimal fibrous
proliferation causing failure of arterial reconstructions. Surgery, 72(6):1007–1017,
1972.
[23] D. N. Ku. Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1):399–
434, 1997.
[24] L. P. Franca and S. L. Frey. Stabilized finite element methods: Ii. the incompressible
navier-stokes equations. Computer Methods in Applied Mechanics and Engineering,
99(2):209–233, 1992.
[25] J. E. Dennis Jr and R. B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations, volume 16. Siam, 1996.
[26] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 7(3):856–869, 1986.
[27] A. Klawonn and L. F. Pavarino. Overlapping schwarz methods for mixed linear
elasticity and stokes problems. Computer Methods in Applied Mechanics and Engineering,
165(1):233–245, 1998.
[28] Rittgers S. E. Keynton, R. S. and M. C. S. Shu. The effect of angle and flow rate
upon hemodynamics in distal vascular graft anastomoses: an in vitro model study.
Journal of Biomechanical Engineering, 113(4):458–463, 1991.
[29] Fischer P. F. Loth, F. and H. S. Bassiouny. Blood flow in end-to-side anastomosis.
Annual Review of Fluid Mechanics, 40(1):367–393, 2008.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2015-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明