博碩士論文 101221601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.233.239.102
姓名 黃海明(Reymond Purnomo)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Multiscale Finite Element Method for Helmholtz Equation)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Helmholtz 方程式為一著名方程式可應用於各種不同的物理問題,特別適用於電磁波的傳導;但是大幅度的震盪、高波數所產生之汙染效應、虛值解以及其非線性都增加求解此一函數的困難度。由於電腦只具有限的CPU容量,若要利用數值模擬得到十分精確的數值結果是非常艱難的。此篇論文採用一方法,我們使用較少的離散點但可得到與較多離散點相同的誤差,此方法同時可應用於線性以及非線性問題。由數值實驗可得知,此方法可以改善線性問題的精確度而避免使用細網格。而對於非線性問題,由於非線性項的影響此一方法提供改善較為不明顯。外,此篇論文亦引入一迭代法用於控制非線性項,並可用於各種數值方法
摘要(英) Helmholtz equation is the one of the mathematical model to describe many physical problems, especially the propagation of electromagnetic waves. Helmholtz equation has some difficulties, such as the highly oscillatory and "pollution effect" for high wavenumber, complex-valued, and has nonlinearity term for nonlinear Helmholtz equation. Because the limitation of memory and CPU size in digital computer, simulating this problem with a large size of computation points is impossible. This thesis presents a method to solve this problem with a few points and has the same accuracy as the large number of discretization point. This method will be applied to both linear and nonlinear problem. From numerical experiment, this method can improve the result and accuracy for linear problem, so that the use of the large number of discretization is not necessary. For nonlinear problem, this method can provide the small improvement because of the nonlinearity term. In addition, this thesis also introduce an iteration method that can handle the nonlinearity term and can be applied for some numerical schemes.
關鍵字(中) ★ 牛頓法
★ 有限元素法
關鍵字(英) ★ Complex-valued solutions
★ Newton′s method
★ Finite element discretization
★ Kerr nonlinearity
論文目次 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Mathematical modelling for numerical simulation of light propagation . . . 3
2.1 Review of the Maxwell equations . . . . . . . . . . . . . . . . . . . . . . 3
2.2 1D scalar Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Description of physical problem . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Numerical schemes for 1D linear Helmholtz equation . . . . . . . . . . . . 10
3.1 Finite difference methods with different boundary treatments . . . . . . . 10
3.2 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Galerkin finite element method . . . . . . . . . . . . . . . . . . . 13
3.2.2 Stabilized finite element method . . . . . . . . . . . . . . . . . . 15
3.2.3 Multiscale finite element method . . . . . . . . . . . . . . . . . . 17
3.2.4 Multiscale stabilized finite element method . . . . . . . . . . . . 22
4 Numerical scheme for 1D nonlinear Helmholtz equation . . . . . . . . . . . 26
4.1 Complex-valued Newton method . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1 Single variable case . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Multiple variables case . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Linearize-then-discretize approach based on complex Newton method . . 32
4.2.1 Newton-finite difference method with different boundary treatments 33
4.2.2 Newton-Galerkin finite element method . . . . . . . . . . . . . . 35
4.2.3 Newton-stabilized finite element method . . . . . . . . . . . . . 38
4.3 Newton-multiscale finite element method . . . . . . . . . . . . . . . . . 40
4.4 Newton-multiscale stabilized finite element method . . . . . . . . . . . . 42
5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 Numerical results for linear problem . . . . . . . . . . . . . . . . . . . . 46
5.1.1 Grid observations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Computational error . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Numerical results for nonlinear problem . . . . . . . . . . . . . . . . . . 53
5.2.1 Grid observation . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Computational error . . . . . . . . . . . . . . . . . . . . . . . . 56
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Appendix: Numerical scheme for 1D linear Helmholtz equation (two incoming
waves case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Appendix: Numerical scheme for 1D nonlinear Helmholtz equation (two incoming
waves case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Appendix: Numerical results for 1D Helmholtz equation (two incoming waves case) 74
參考文獻 [1] G. Baruch, G. Fibich, and S. Tsynkov. High-order numerical method for the nonlinear
helmholtz equation with material discontinuities in one space dimension. J. Comput.
Phys., 227:820–850, 2007.
[2] G. Baruch, G. Fibich, and S. Tsynkov. High-order numerical solution of the nonlin-
ear helmholtz equation with axial symmetry. J. Comput. Appl. Math., 204:477–492,
2007.
[3] G. Baruch, G. Fibich, and S. Tsynkov. A high-order numerical method for the non-
linear helmholtz equation in multidimensional layered media. J. Comput. Phys.,
228:3789–3815, 2009.
[4] W. Chen and D.L. Mills. Optical response of a nonlinear dielectric film. Phys. Rev.,
35(2):524–532, 1987.
[5] G. Fibich and S. Tsynkov. High-order two-way artificial boundary conditions for
nonlinear wave propagation with backscattering. J. Comput. Phys., 171:632–677,
2001.
[6] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer, 1998.
[7] J.H. Marburger and F.S. Felber. Theory of lossless nonlinear fabry-perot interferom-
eter. Phys. Rev., 17(1):335–342, 1978.
[8] A. Suryanto, E. van Groesen, M. Hammer, and H.J.W.M. Hoekstra. A finite element
scheme to study the nonlinear optical response of a finite grating without and with
defect. Opt. Quant. Electron., 35:313–332, 2003.
[9] H. Wilhelm. Analytical solution of the boundary-value problem for the nonlinear
helmholtz equation. J. Math. Phys., 228, 1970.
[10] S. Zhou, X. Cheng. A fourth-order numerical method for the one-dimensional
nonlinear Helmholtz equation with multilayered material. J. Comput. Appl. Math.,
228(2), 2007.
指導教授 黃楓南(Feng-nan Hwang) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明