博碩士論文 101222008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.14.133.148
姓名 徐郁鈞(Yu-Chun Hsu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(The interfacial effect on spin-transfer torque in single molecular magnetic junctions: A first-principles study)
相關論文
★ Stretching effect on the spin transport properties of single molecular junctions: A first-principle study★ First-principles study in wurtzite InN bulk, thin film, and nanobelt
★ Spin transport calculation for thiol-ended single-molecule magnetic junction★ Combined first-principles and tight-binding Hamiltonian study of Fe-MgO-Fe magnetic tunnel junctions
★ Anchoring Effect on Spin Transport in Amine-Ended Single-Molecule Magnetic Junctions: A First-Principles Study★ Analytic derivation for spin-transfer properties in magnetic tunnel junctions
★ Simulation for Cu-platted Front Side Metallization of Si-based Solar Cell★ 利用單能階緊密鍵結模型計算磁性穿隧接合的自旋傳輸特性
★ Electronic and Spin Transport Properties of Fe/MgO/Fe Magnetic Tunnel Junction: Combined First-Principles Calculation and TB-NEGF Method★ First-principles study in structural and elec-tronic properties of FeBaTiO3Fe multiferroic tunneling junction
★ Effect of contact geometry on the spin transfer calculation in amine-ended single-molecule magnetic junctions★ Spin Transport Properties in Magnetic Heterojunctions: Analytical derivation in Green’s function and Multi-reflection process
★ Modification of Distributional Exact Diagonalization Approach for Single Impurity Anderson Model★ Strain-Induced Magnetic-Nonmagnetic Transition in PtSe2 Nanoribbon: A First-Principles Study
★ 具電阻切換行為之氧化鋁磁性穿隧接面中低頻雜訊與傳輸機制研究★ Understanding Oscillatory Domain Wall Motion via Spin Waves Theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來隨著自旋電子學的快速發展,人們可以藉由電子的自旋狀態來儲存資料,磁電阻式隨機存取記憶 (magnetoresistive random access memory,MRAM) 具有非揮發性 (nonvolatility)、快速讀寫、低功耗及高元件整合密度等特性,因此如何有效得改變磁矩狀態便成為重要的課題。其中使用電流所產生的自旋轉移力矩(Spin-transfer torque) 改變磁矩狀態的MRAM,我們稱之為 STT-MRAM。

在理論模擬上,我們選用兩種不同官能基的有機化合物,對苯二胺 (1,4-benzenediamine, BDA) 以及對苯二硫醇 (1,4-benzenedithol, BDT),作為磁性單分子通道的材料,並在分子兩端接上鈷 (111) 的奈米金屬線作為提供自旋電子注入的電極。同時,我們改變兩電極間的距離,使用第一原理計算其最適原子位置,並利用非平衡態的格林函數 (Non-equilibrium Green’s function) 計算自旋電子的穿隧特性。我們發現在有機分子與金屬電極的介面上,以氮和硫作為不同通道的錨定離子時,自旋的交換特性有明顯的差異;藉由翻轉右邊電極的磁矩方向,使系統成為平行與反平行的狀態,接著各別改變其右邊電極的化學位能,使通道左右兩側產生電位差,進而計算出通道的自旋電流 (Spin-polarized current) 。我們發現以氮作為錨定離子的 Co/BDA/Co 單分子通道,可以得到很高的磁阻率 (Magnetoresistance);藉由自旋轉移力矩通式 (General expression) 的預測,也發現此通道可以產生巨大的自旋轉移力矩。因此以氮作為錨定離子的Co/BDA/Co 單分子磁性通道,有很大的機會能在有機分子的 STT-MRAM 應用領域中扮演重要的角色。

摘要(英) In recent years, the switching of magnetic states by using current in magnetoresistive random access memory has attracted great attentions due to the newly discovered spin-transfer torque (STT) effect in magnetic tunneling junctions. In order to study the interfacial effects on the STT effect in the single molecular magnetic junction, we choose two kinds of molecule with different anchoring ions, 1,4-benzenediamine (BDA) and 1,4-benzenedithol (BDT), sandwiched by two Co(111) nanowires. To simulate the stretching effect, we first increase the distance between two electrodes step by step, and then optimize the structures of each step by using the first-principles calculations, until the junction is breakdown. The NEGF-DFT+LDA calculation is further employed to obtain the spin-polarized transmission spectra and the projected density of states. Although the similar breakdown behavior can be observed in both junctions, our calculation results suggest the superior spin transfer via amine-ended Co/BDA/Co junction, due to the strong coupling between N-p orbital and Co-d orbitals at the Fermi energy. This is in sharp contrast to the traditional molecular junction, where thiol-ended π-conjugated molecule mediates a better electron charge transfer between non-magnetic electrodes. Such NH-anchoring-induced spin-filtering effect, resulting from the significant and broad spin-up transmission features solely in PC configuration, not only gives rise to the high MR value, which can reach up to about 700% under low bias, but also leads to the giant magnitude of STT, which is about three order larger than that of conventional MgO-based MTJs. Theses interesting findings suggest that amine-ended π-saturated single molecular magnetic junction may open a novel and promising organic-based- STT-MRAM applications.
關鍵字(中) ★ 自旋轉移磁矩
★ 單分子通道
★ 磁阻
★ 自旋傳輸
★ 第一原理計算
關鍵字(英) ★ spin-transfer torque
★ single molecular junctions
★ magnetoresistance
★ spin transport
★ first-principles calculation
論文目次 Chapter 1 Introduction 1

Chapter 2 Theory 5

2.1 Density Function Theory 5

2.1.1 Born-Oppenheimer Approximation 5

2.1.2 Hartree-Fock Approximation 7

2.1.3 The Hohenberg-Kohn Theorem 9

2.1.4 The Kohn-Sham Equation 11

2.1.5 Exchange-Correlation Energy Functionals 14

Local Density Approximation (LDA) 14

Generalized Gradient Approximation (GGA) 15

2.1.6 Pseudopotential Method 15

2.2 Non-Equilibrium Green’s Function Method 17

2.2.1 Self-Consistent in NEGF-DFT Calculation 17

2.2.2 Spin-Transport Property Calculation 21

Total Energy 21

Transmission 22

Density of States 23

Spin-Polarized Current 24

2.3 Spin-Transfer Torque 25

2.3.1 Spin Current Density 25

2.3.2 Toy Model 26

2.3.3 STT of Magnetic Tunneling Junction 29

Chapter 3 Computational Details 32

3.1 Structural Geometry 32

3.2 Parameters for Structural Relaxation 34

3.3 Parameters for Spin Transport Properties 35

Chapter 4 Results and Discussions 37

4.1 Structural Relaxation during Stretching 37

4.2 Effect of Anchoring Groups 41

4.3 Effect of Co Adatom 49

4.4 Spin-Polarized Current and Magnetoresistance 51

4.5 Spin-Transfer Torque Effect 60

Chapter 5 Summary 64

References 65

參考文獻 [1] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Physical Review Letters 61, 2472 (1988).

[2] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Physical Review B 39, 4828 (1989).

[3] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Physical Review B 43, 1297 (1991).

[4] C. Chappert, A. Fert, and F. N. Van Dau, Nat Mater 6, 813 (2007).

[5] M. Julliere, Physics Letters A 54, 225 (1975).

[6] S. Maekawa and U. Gafvert, Magnetics, IEEE Transactions on 18, 707 (1982).

[7] T. Miyazaki and N. Tezuka, Journal of Magnetism and Magnetic Materials 139, L231 (1995).

[8] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Physical Review Letters 74, 3273 (1995).

[9] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat Mater 3, 868 (2004).

[10] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nat Mater 3, 862 (2004).

[11] G. D. Fuchs et al., Applied Physics Letters 85, 1205 (2004).

[12] G. D. Fuchs, J. A. Katine, S. I. Kiselev, D. Mauri, K. S. Wooley, D. C. Ralph, and R. A. Buhrman, Physical Review Letters 96, 186603 (2006).

[13] I. Mihai Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Nat Mater 9, 230 (2010).

[14] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).

[15] A. R. Mellnik et al., Nature 511, 449 (2014).

[16] Y. Fan et al., Nat Mater 13, 699 (2014).

[17] L. E. Hueso et al., Nature 445, 410 (2007).

[18] D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Physical Review Letters 96, 166804 (2006).

[19] Z. Ning, Y. Zhu, J. Wang, and H. Guo, Physical Review Letters 100, 056803 (2008).

[20] S. Sanvito, Nat Phys 6, 562 (2010).

[21] B. Q. Xu, X. L. Li, X. Y. Xiao, H. Sakaguchi, and N. J. Tao, Nano Lett 5, 1491 (2005).

[22] I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, Physical Review Letters 97, 237205 (2006).

[23] Y. H. Tang, N. Kioussis, A. Kalitsov, W. H. Butler, and R. Car, Physical Review B 81, 054437 (2010).

[24] L. H. Thomas, Mathematical Proceedings of the Cambridge Philosophical Society 23, 542 (1927).

[25] E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927).

[26] P. A. M. Dirac, Mathematical Proceedings of the Cambridge Philosophical Society 26, 376 (1930).

[27] M. Born and R. Oppenheimer, Annalen der Physik 389, 457 (1927).

[28] D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society 24, 89 (1928).

[29] V. Fock, Z. Phys. 61, 209 (1930).

[30] P. Hohenberg and W. Kohn, Physical Review 136, B864 (1964).

[31] W. Kohn and L. J. Sham, Physical Review 140, A1133 (1965).

[32] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Physical Review B 46, 6671 (1992).

[33] J. Taylor, H. Guo, and J. Wang, Physical Review B 63, 245407 (2001).

[34] J. Taylor, H. Guo, and J. Wang, Physical Review B 63, 121104 (2001).

[35] P. Ordejón, E. Artacho, and J. M. Soler, Physical Review B 53, R10441 (1996).

[36] S. G. Louie, S. Froyen, and M. L. Cohen, Physical Review B 26, 1738 (1982).

[37] D. C. Ralph and M. D. Stiles, Journal of Magnetism and Magnetic Materials 320, 1190 (2008).

[38] J. C. Slonczewski, Physical Review B 71, 024411 (2005).

[39] J. C. Slonczewski, Journal of Magnetism and Magnetic Materials 195, L261 (1999).

[40] J. C. Slonczewski, Journal of Magnetism and Magnetic Materials 247, 324 (2002).

[41] Quantum ESPRESSO, http://www.quantum-espresso.org/

[42] N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Physical Review Letters 82, 3296 (1999).

[43] NanoAcademic Technologies, http://www.nanoacademic.ca/

[44] Y. Kim, T. J. Hellmuth, M. Bürkle, F. Pauly, and E. Scheer, ACS Nano 5, 4104 (2011).

[45] Y. H. Tang, V. M. K. Bagci, J.-H. Chen, and C.-C. Kaun, The Journal of Physical Chemistry C 115, 25105 (2011).

[46] W. F. Brinkman, R. C. Dynes, and J. M. Rowell, Journal of Applied Physics 41, 1915 (1970).

[47] X. Jia, K. Xia, Y. Ke, and H. Guo, Physical Review B 84, 014401 (2011).

指導教授 唐毓慧(Yu-Hui Tang) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明