博碩士論文 101222010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.174.43.27
姓名 孫嘉亨(Chia-Heng Sun)  查詢紙本館藏   畢業系所 物理學系
論文名稱 實驗觀測混合式單電子箱中之共同穿隧事件
(Experimental determination of the elastic cotunneling rate in a hybrid single-electron box)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討
★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測
★ 二維電子氣體中量子點接觸 與量子點製作及量測★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們研究由三個金屬島構成的混合式單電子盒(hybrid single-electron box)的系統,以鋁做為超導金屬島,並藉由氧化鋁所形成的穿隧接面(tunnel junction)連接兩旁由銅形成的一般金屬島。兩個一般金屬島各自電容耦合一個單電子電晶體(single-electron transistor),觀測這兩個單電子電晶體的電流變化可得知三個金屬島間的電子個數分佈及變化。此外,三個金屬島周圍各有一個電極控制金屬島的電位。我們藉由控制這些電極,操縱電子在金屬島中的傳輸。
「共同穿隧(cotunneling)」這種傳輸機制是混合式單電子電晶體(hybrid single-electron transistor)做為電子旋轉門(single-electron turnstile)的最大誤差來源。研究混合式單電子盒裡的電子「共同穿隧」事件,我們發現測量的共同穿隧率在簡併態時為1Hz,與理論預測之值相符。本實驗幫助我們進一步認識混合式單電子電晶體做為一個電子旋轉門的誤差來源。
摘要(英) We study dynamics of charge configuration in a hybrid single-electron box. The box consists of a superconducting (aluminum) island and two normal metal (cooper) islands. The aluminum island connects to two copper islands via two tunnel junctions formed by aluminium oxide. The charge state of the box is inspected using two capacitively coupled single-electron transistors (SETs). Each island has a nearby gate electrode to control the charge configuration of the box.
"Cotunneling" is the main error process of hybrid SET as a single-electron turnstile. From the study of charge dynamics in a hybrid single-electron box we find the measured cotunneling rate is as low as 1 Hz at degeneracy and compatible with theoretical estimates. The results help to identify the error rate in a hybrid SET.
關鍵字(中) ★ 混合式單電子盒
★ 單電子電晶體
★ 共同穿隧
★ 電子旋轉門
關鍵字(英) ★ hybrid single-electron box
★ single-electron transistor
★ cotunneling
★ single-electron turnstile
論文目次 Introduction 1
Chapter 1 Introduction to Single-Electron Device 3
1.1 Single-Electron Box 3
1.2 Single-Electron Transistor 7
1.3 Single-Electron Pump 12
1.4 Hybrid Single-Electron Transistor 15
1.5 Cotunneling in a Hybrid SET 18
Chapter 2 Experimental Methods 21
2.1 Experimental Approach for Determining Cotunneling Rate 21
2.2 Electron-Beam Lithography 22
2.3 Oxidization and Angle Evaporation 24
2.4 Sample Fabrication 25
2.5 Measurement Setup 27
Chapter 3 Result of Experiment 29
3.1 Analysis of SET Current Readout 29
3.2 Identification of Various Tunneling Processes 30
3.3 Determination of the Elastic Cotunneling Rate 36
Chapter 4 Conclusion and Future Work 40
Reference 41
參考文獻 [1] Likharev, K.K., Single-electron devices and their applications. Proceedings of the Ieee, 1999. 87(4): p. 606-632.
[2] Pekola, J.P., et al., Single-electron current sources: Toward a refined definition of the ampere. Reviews of Modern Physics, 2013. 85(4): p. 1421-1472.
[3] Keller, M.W., et al., Accuracy of electron counting using a 7-junction electron pump. Applied Physics Letters, 1996. 69(12): p. 1804-1806.
[4] Pothier, H., et al., SINGLE ELECTRON PUMP FABRICATED WITH ULTRASMALL NORMAL TUNNEL-JUNCTIONS. Physica B, 1991. 169(1-4): p. 573-574.
[5] Kouwenhoven, L.P., et al., QUANTIZED CURRENT IN A QUANTUM-DOT TURNSTILE USING OSCILLATING TUNNEL BARRIERS. Physical Review Letters, 1991. 67(12): p. 1626-1629.
[6] Ono, Y. and Y. Takahashi, Electron pump by a combined single-electron/field-effect-transistor structure. Applied Physics Letters, 2003. 82(8): p. 1221-1223.
[7] Feltin, N. and F. Piquemal, Determination of the elementary charge and the quantum metrological triangle experiment. European Physical Journal-Special Topics, 2009. 172: p. 267-296.
[8] Pekola, J.R., et al., Hybrid single-electron transistor as a source of quantized electric current. Nature Physics, 2008. 4(2): p. 120-124.
[9] Averin, D.V. and J.P. Pekola, Nonadiabatic charge pumping in a hybrid single-electron transistor. Physical Review Letters, 2008. 101(6).
[10] Lafarge, P., et al., DIRECT OBSERVATION OF MACROSCOPIC CHARGE QUANTIZATION. Zeitschrift Fur Physik B-Condensed Matter, 1991. 85(3): p. 327-332.
[11] Pekola, J.P. and O.P. Saira, Work, Free Energy and Dissipation in Voltage Driven Single-Electron Transitions. Journal of Low Temperature Physics, 2012. 169(1-2): p. 70-76.
[12] Dresselhaus, P.D., et al., MEASUREMENT OF SINGLE-ELECTRON LIFETIMES IN A MULTIJUNCTION TRAP. Physical Review Letters, 1994. 72(20): p. 3226-3229.
[13] Maisi, V.F., et al., Real-Time Observation of Discrete Andreev Tunneling Events. Physical Review Letters, 2011. 106(21).
[14] Jensen, H.D. and J.M. Martinis, ACCURACY OF THE ELECTRON PUMP. Physical Review B, 1992. 46(20): p. 13407-13427.
[15] Kemppinen, A., et al., Quantized current of a hybrid single-electron transistor with superconducting leads and a normal-metal island. European Physical Journal-Special Topics, 2009. 172: p. 311-321.
[16] Maisi, V.F., et al., Parallel pumping of electrons. New Journal of Physics, 2009. 11.
[17] Averin, D.V. and Y.V. Nazarov, SINGLE-ELECTRON CHARGING OF A SUPERCONDUCTING ISLAND. Physical Review Letters, 1992. 69(13): p. 1993-1996.
[18] Berman, D., et al., Single-electron transistor as a charge sensor for semiconductor applications. Journal of Vacuum Science & Technology B, 1997. 15(6): p. 2844-2847.
[19] Sun, C.-H., et al., Experimental determination of the elastic cotunneling rate in a hybrid single-electron box. Applied Physics Letters, 2014. 104(23).
[20] Bubanja, V., Cotunneling suppression in a hybrid single-electron transistor by a dissipative electromagnetic environment. Physical Review B, 2011. 83(19).
指導教授 陳永富(Yung-Fu Chen) 審核日期 2015-4-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明