博碩士論文 101222012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.42.196
姓名 李承軒(Cheng-Xuan Li)  查詢紙本館藏   畢業系所 物理學系
論文名稱 複數勞倫茲對稱
(Complexified Lorentz symmetry)
相關論文
★ 違反R-parity之超對稱標準模型下, 夸克-純量場一階費曼圖對中子電耦極矩之貢獻★ 無R超對稱標準模型中輕子的輻射衰變
★ 超對稱無R宇稱下的電子電偶極矩★ 龐加萊─史奈德相對論架構下的古典與量子力學
★ Lie Algebra Contraction and Relativity Symmetries★ 伽利略座標下的電磁學與龐加萊-史奈德相對論下的電磁學
★ Coherent state and co-adjoint orbits on irreducible representations of SU(4)★ 無R宇稱超對稱裡的輕子味違反希格斯衰變
★ Wigner-Weyl′s transform and its contraction★ Effective Theories for Supersymmetric Nambu-Jona-Lasinio Models established through Functional Integration
★ Kähler Product and Symmetry Data in Quantum Mechanics
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 已經有許多理論預測了超光速粒子以及超光速運動的相對論。我們在這篇文章中提出了複數勞倫茲對稱 (Complexified Lorentz symmetry),或稱作複數勞倫茲群 (Complex Lorentz group),我們將勞倫茲群以及它的群表示 (Representation) 複數化 (Complexify) 後,從三加一維的實數時空變成三加一維的複數向量空間,然後證明它是不可約化(irreducible)。然後我們我們使用 SL(4,C) 的餘空間( Coset space)去找到複數的閔可夫斯基時空 (Complex Minkowski space) 以及複數勞倫茲群如何作用在上面。最後我們定義了複數閔可夫斯基時空的均速運動並將之視為一條複數線並且分類。
摘要(英) There are many theory about faster than light particles, and the new transformation that apply for relative velocities greater than the speed of light. We propose here a complexified Lorentz symmetry, or complex Lorentz group, we complexify Lorentz group and representation from real Lorentz group and 3+1 real space time, and find it is irreducible in 3+1 complex vector space. And we use the coset space of SL(4,C) to find complex Minkowski space and how complex Lorentz group acting on it. Finally we define the uniform motion in complex Minkowski space as complex line and classify it.
關鍵字(中) ★ 勞倫茲群
★ 勞倫茲對稱
★ 複數化
★ 複數閔可夫斯基時空
關鍵字(英) ★ Lorentz symmetry
★ Lorentz group
★ Complexification
★ Complex Minkowski space
論文目次 1 Introduction 1
2 Background 4
2.1 Complex vector space . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 De nition . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Metric tensor . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Lie group and Lie algebra . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Lie algebra and representation . . . . . . . . . . . . . . 7
2.2.2 Lie group . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Real form and real Lie algebra . . . . . . . . . . . . . . 8
2.2.4 Representation of so(1; 3) . . . . . . . . . . . . . . . . 8
3 Complexi cation of Lie algebra and representation 10
3.1 Real representation of real Lie algebra . . . . . . . . . . . . . 10
3.2 Complexi cation and reali cation of Lie algebra . . . . . . . . 11
3.3 Irreducible real representation . . . . . . . . . . . . . . . . . . 13
3.4 Real representation of su(2) . . . . . . . . . . . . . . . . . . . 15
4 Complex Lorentz group through complexi cation 20
4.1 Complexi cation of so(1; 3) . . . . . . . . . . . . . . . . . . . 20
4.1.1 Irreducible representation . . . . . . . . . . . . . . . . 20
4.1.2 so(1; 3)C = sl(2;C)  sl(2;C) . . . . . . . . . . . . . . . 22
4.2 Spinor representation . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Complex Lorentz group . . . . . . . . . . . . . . . . . . . . . . 25
5 Complex Minkowski space as a coset space 26
5.1 Coset space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.1 De nition and properties . . . . . . . . . . . . . . . . . 26
5.2 Minkowski space . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1 Complex Minkowski space . . . . . . . . . . . . . . . . 27
5.2.2 Action on complex Minkowski sapce . . . . . . . . . . 28
5.2.3 In nitesimal approach . . . . . . . . . . . . . . . . . . 28
5.2.4 Complexi ed Lorentz symmetry through coset space . 30
5.3 U(1) transformation . . . . . . . . . . . . . . . . . . . . . . . 30
6 Complex Minkowski space 33
6.1 Timelike, spacelike, and lightlike . . . . . . . . . . . . . . . . . 33
6.2 Complex boost and complex rotation . . . . . . . . . . . . . . 34
6.3 Complex four velocity and proper time . . . . . . . . . . . . . 35
6.3.1 Proper time . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.2 Complex line . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.3 Analytic . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.4 Complex four velocity . . . . . . . . . . . . . . . . . . 37
6.4 Case in real subspace . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Subliminal and superluminal motion in complex space time . . 44
7 Conclusion and outlook 46
A 47
Bibliography 49
參考文獻 [1] James M. Hill and Barry J. Cox 2012 Einstein′s special relativity beyond
the speed of light. Proc. R. Soc. A (doi:10.1098/rspa.2012.0340)
[2] Mush ig Ahmad and Muhammad O. G. Talukder Reciprocal symmetric
extension of special relativity beyond the speed of light.
[3] Robert H. Wasserman 2004 Tensors and Manifolds (Oxford University
Press)
[4] Theodore Frankel 2012 The Geometry of physics (Cambridge University
Press)
[5] Francesco Iachello 2006 Lie Algebras and Applications (Berlin:springer)
[6] V.S. Varadarajan 1984 Lie Groups, Lie Algebras, and Their Representations
(NewYork:springer)
[7] Brian C. Hall 2003 Lie Groups, Lie Algebras, and Representations An
Elementary Introduction (NewYork:springer)
[8] Gerd Rudolph, Matthias Schmidt 2013 Di erential Geometry and Mathematical
Physics (springer)
[9] John M. Lee 2013 Introduction to Smooth Manifolds (NewYork:springer)
[10] Arkady L. Onishchik 2004 Lectures on Real Semisimple Lie Algebras
and Their Representations (Switzerland:European Mathematical Society)
[11] Theodor Brocker, Tammo tom Dieck 1985 Representation of Compact
Lie Groups (NewYork:springer)
[12] Gerald ITZKOWITZ, Sheldon ROTHMAN, Helen STRASSBERG 1990
Journal of Pure and Applied Algebra 69 285-294
[13] William Fulton, Joe Harris 1991 Representation Theory A First Coures
(NewYork:springer)
[14] Camelia Ciobanu 2003 The Lie Alegebra sl(2) And its Representations
An. St. Univ. Ovidius Constanta Vol.11(1) 55-62
[15] Charlotte Chan 2012 The Story of sl(2,C) and its Representations
[16] Jeevanjee, Nadir An Introduction to Tensors and Group Theory for
Physicists (springer)
[17] PS Howew, G G Hartwell 1995 A superspace survey Class. Quantum
Grav. 12 1823-1880
[18] Robert Gilmore 1974 Lie Groups, Lie Algebras, and Some of Their Applications
(John Wiley)
[19] R. S. Ward, Raymond O. Wells, JR. 1990 Twistor geometry and eld
theory (Cambridge University Press)
53
指導教授 江祖永(Otto C.W. Kong) 審核日期 2016-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明