博碩士論文 101222016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.95.139.100
姓名 曹志謙(Chih-Chien Tsao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 被動粒子在不同的流體型態
(Passive Particles in Bacterial Bath of Different Swimming Patterns)
相關論文
★ 多細菌鞭毛馬達的同步轉動量測★ Investigation of the Dual Flagellar Motor System
★ 長形群游細菌的集體運動★ Investigating Stators Assembly of Flagellar Motors in Escherichia Coli by PALM
★ Lab on the Agar Plates★ Dynamical Patterns in Vibrio alginolyticus Swarm Plate
★ Probing the Physical Environments of Bacterial Swarm Colony★ Spiral-coil Formation in Semi-flexible Self-propelled Chain System
★ Real-Time Measurement of Vibrio alginolyticus Polar Flagellar Growth★ Foraging behavior of Caenorhabditis elegans
★ Investigating the Growth Mechanism of Bacterial Flagella by Real-time Fluorescent Imaging★ Jamming State of Active Nematics
★ Probing Escherichia coli Energetics under Starvation by Single-Cell Measurements★ Probing Cell Wall Synthetic Dynamics by Bacterial Flagellar Motor in Escherichia coli
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在傳統的布朗運動中,物體都是從環境中的熱擾動所得到動能以及被驅動,被動粒子與水分子都是被動的型態而兩者的大小大約差了〖10〗^4;本篇論文主要探討主動粒子與被動粒子之間的交互作用利用實驗以及數值模擬的方法來研究,藉由主動粒子來提升被動粒子的擴散率在低雷諾數的環境中,而細菌是一種良好方便的方法建立自我推進粒子系統。
我們選擇了溶藻弧菌作為實驗中的自我推進粒子,它利用單一鞭毛馬達來做為運動的動力來源,而溶藻弧菌的鞭毛馬達利用鈉離子濃度差來獲取能量,所以調控環境中不同的鈉離子濃度來控制自我推進粒子的運動速度;此外,我們利用兩種不同的品種:VIO5(前進和後退)以及NMB136(直游)。實驗上,將聚苯乙烯的粒子混入自我推進粒子中在二維薄膜系統,並調控了自我推進粒子的特性、速度、濃度,以及被動粒子的大小。
我們主要關注在短時間尺度下被動粒子的行為,利用了Mean Square Displacement、Particle Image Velocimetry (PIV)、Power spectra 和 Probability density function (PDF),我們觀察到在短時間內不同的主動粒子給予被動粒子相同的影響,但在時間大於0.3秒以後直游的主動粒子可以造成長時間的影響,而從不同濃度中可以發現隨著直游的主動粒子濃度增加被動粒子所受到影響也隨之增加,但增加前進和後退的主動粒子濃度所受的影響卻達到飽和;從PDF中,我們也觀察到被動粒子主要受到兩種影響,一個為布朗運動,另一個則是主動粒子所帶來的碰撞;從改變不同被動粒子大小中,觀察到在前進和後退的主動粒子溶液中,某特地大小的被動粒子會受到較大的影響。
此外,為了進一步了解主動粒子所帶來的影響,我們利用數值模擬的方法來探討直游的主動粒子與被動粒子之間碰撞所帶來的影響,改變不同的情況去比較實驗與模擬兩著的差異,發現群體運動和碰撞在主動粒子與被動粒子之間是很重要的。
摘要(英) In the classical picture of Brownian motion, both the particles and fluid molecules are passive, driven by thermal fluctuations and the size of particle is larger than fluid molecules. In this thesis, we present both the experimental and computational studies of passive particle motions in active particle which size similar to passive particle. The bacteria are ideal candidates for building experimental active particle systems. We use polar single-flagellated bacteria, Vibrio alginolyticus, as controllable straight-swimming (NMB136) and reversal (VIO5) particles. Passive micron-size particles are mixed with active bacteria in free-standing films as quasi-two-dimensional systems. We control bacterial swimming speed (active particle speed), cell concentration and size of passive particle.
By analyzing the mean square displacements (MSD) of passive particles, we study the motional behavior at short time scales. When the passive particles interact with straight and reversal swimmer, it both shows ballistic behavior in short time scale. The straight swimmer can enhance the diffusion to a longer time scale indicating the different swimming pattern have strong influence on the passive particle behavior. We found that there are two kinds of mechanisms of passive particles motion, one is ordinary Brownian motion and the other is the collisions by active particle. In the reverse particle, the size of passive particle has favorite dimension by the collective motion.
In order to learn the mechanism of the enhanced diffusion in our experimental system, we build up Brownian dynamic simulation to study the interaction between the passive and active particles. The behavior of passive particle is effective by increasing the bacterial swimming speed (active particle speed) and cell concentration which increase frequency of collision. Therefore, collision rate and collective motion are both important in active suspension bath.
關鍵字(中) ★ 自我推進粒子
★ 海洋弧菌
關鍵字(英) ★ Bacterial Bath
★ passive particle
★ superdiffusion
論文目次 Chapter I 1
Introduction 1
1.1 Background and motivation 1
1.2 Hydrodynamic interaction 4
1.2.1 Reynolds number 4
1.2.2 The scallop theorem 5
1.2.3 The Stokes-Einstein relation 6
1.3 Overview of the self-propelling particle 8
1.3.1 Biomotors 8
1.3.2 Artificial flagella 11
1.3.3 Thermophoretic 13
1.3.4 Diffusiophoretic 14
1.4 Collective motion 16
Chapter II 18
Experiment 18
2.1 Microscopy 18
2.2 Phase-Contrast imaging 19
2.3 Free-Standing Film 21
2.4 Vibrio alginolyticus 22
2.4.1 Protocol 24
2.5 Particle tracking 25
2.6 Mean Square Displacement 26
2.7 Particle Image Velocimetry 27
Chapter III 28
Simulation 28
3.1 The Langevin equation 28
3.2 Interaction potential and Force 29
3.2.1 Weeks-Chandler Andersen potential 29
3.2.2 FENE potential 30
3.2.3 Bending energy 31
3.3 Gaussian noise term 32
3.4 Propulsion force 32
3.5 System of simulation 33
3.5.1 Diffusion of bacterium 34
Chapter IV 36
Passive Particles in Bacterial Bath of Different Swimming Patterns 36
4.1 Swimming pattern effect 37
4.2 Cell concentration 39
4.3 Single motor rotational rate 41
4.4 Size of passive particle effect 45
Chapter V 47
Experiment and Simulation –Colloids in active straight-swimming particle bath 47
5.1 Collision by active particle 47
5.2 Cell concentration 48
5.3 Size effect 50
5.4 Velocity of straight-swimming particle 52
5.5 Orientational order 54
Chapter VI 57
Discussion and Conclusion 57
6.1 Passive Particles in Bacterial Bath of Different Swimming Patterns 57
6.2 Experiment and Simulation -- Colloids in an active straight particle 61
 Reference 63
參考文獻  Reference
[1] Xiao-Lun Wuand Albert Libchaber (2000). Particle Diffusion in a Quasi-Two- Dimensional Bacterial Bath. Phy Rev Lett, 84, 13

[2] Christopher Dombrowski, Luis Cisneros, Sunita Chatkaew, Raymond E. Goldstein and John O. Kessler, (2004). Self-Concentration and Large-Scale Coherence in Bacterial Dynamics. Phy Rev Lett, 93, 9.

[3] Andrey Sokolov and Igor S. Aranson (2012). Physical Properties of Collective Motion in Suspensions of Bacteria. Phy Rev Lett, 109, 248109.

[4] Kyriacos C. Leptos, Jeffrey S. Guasto, J. P. Gollub, Adriana I. Pesci, and Raymond E. Goldstein (2009).Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms. Phy Rev Lett, 103, 198103.

[5] GastónMiño, Thomas Mallouk, Thierry Darnige, Mauricio Hoyos, JeremiDauchet, Jocelyn Dunstan, Rodrigo Soto, Yang Wang, Annie Rousselet and Eric Clement (2011). Enhanced Diffusion due to Active Swimmers at a Solid Surface. Phy Rev Lett, 106, 048102

[6] D. T. N. Chen, A.W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh (2007). Fluctuations and Rheology in Active Bacterial Suspensions. Phy Rev Lett, 99, 148302.

[7] Shahid Khan and Michael P. Sheetz.(1997). Force effects on biochemical kinetics. Annual Review of Biochemistr, 66, 785–805.

[8] Berg, H. C. (2003). The rotary motor of bacterial flagella. Annual Review of Biochemistry,72, 19-54.

[9] Kwangmin Son, Jeffrey S. Guasto and Roman Stocker (2013).Bacteria can exploit a flagellar buckling instability to change direction. Nature physics 9, 494-498.


[10] Rémi Dreyfus, Jean Baudry, Marcus L. Roper, Marc Fermigier, Howard A. Stone and Jérôme Bibette (2005).Microscopic artificial swimmers. Nature, 437, 862-865
[11] Li Zhang, Jake J. Abbott, Lixin Dong, Bradley E. Kratochvil, Dominik Bell, and
Bradley J. Nelson. (209). Artificial bacterial flagella: Fabrication and magnetic control. Appiled Phycics Letters,94, 064107.

[12] Li Zhang, Jake J. Abbott, Lixin Dong, Kathrin E. Peyer, Bradley E. Kratochvil, Haixin Zhang, Christos Bergeles, and Bradley J. Nelson. (2009). Characterizing the Swimming Propertiesof Artificial Bacterial Flagella. Nano Letters,9, 3663-3667.

[13] Li Zhang, Kathrin E. Peyer and Bradley J. Nelson.(2010). Artificial bacterial flagella for micromanipulation.Lab Chip,10,2203–2215.

[14] AloisWürger. (2007). Thermophoresis in Colloidal Suspensions Driven by Marangoni Forces.Phy Rev Lett,98, 138301.

[15] Hong-Ren Jiang, NatsuhikoYoshinaga, and Masaki Sano. (2010). Active Motion of aJanus Particle by Self-Thermophoresis in a Defocused Laser Beam.Phy Rev Lett, 105, 268302.

[16] Ramin Golestanian. (2010) Debut of a hot “fantastic voyager. Physics, 3, 108.

[17] Rustem F. Ismagilov, Alexander Schwartz, Ned Bowden, and George M. Whitesides (2002).Autonomous Movement and Self-Assembly.Angew.Chem. Int. Ed, 41, 4.

[18] Walter F. Paxton, Kevin C. Kistler, Christine C. Olmedaet al. (2004) Catalytic Nanomotors: Autonomous Movement of StripedNanorods.American Chemical Society.126,13424-13431

[19] Walter F. Paxton, Paul T. Baker, Timothy R. Klineet al. (2006). Catalytically Induced Electrokinetics for Motors and Micropumps.American Chemical Society.128, 14881-14888.

[20] H. P. Zhang, Avraham Béer, E.-L.Florin, and Harry L. Swinney. (2010). Collective motion and density fluctuationsin bacterial colonies. Proc. Natl Acad. Sci. USA, 107, 13626–13630.


[21] TamásVicsek and Anna Zafiris.(2012). Collective motion. Physics Reports. 517, 71-140.

[22] TamásVicsek, AndrásCzirók, Eshel Ben-Jacob, Inon Cohen and OferShochet (1995). Novel Type of Phase Transition in a System of Self-Driven ParticlesPhy Rev Lett,75, 1226.

[23] RaminGolestanian, Julia M. Yeomans and Nariya Uchida.(2011). Hydrodynamic synchronization at low Reynolds number.Soft Matter, 7, 3074-3082

[24] Chantal Valeriani, Martin Li, John Novosel, JochenArlt and DavideMarenduzzo. (2011). Colloids in a bacterial bath: simulations and experiments. Soft Matter, 7, 5228-5238

[25] Frits Zernike. (1953). How I discovered phase contrast. Nobel Lecture

[26] Scheffers, W.A., and Golten, C (1973). A search for marine vibrios along the Dutch coast.J MicrobiolSerol,39,366

[27] Willemina E. De Boer, Carol Golten and W.A. Scheffers.(1975). Effects of some physical factors on flagellation and swarming of Vibrio alginolyticus.Netherlands Journal of Sea Research,9, 197-200.

[28] http://www.physics.emory.edu/faculty/weeks//idl/

[29] Sung Min Choi,Wi Han Kim,Daniel Côté,Cheol-Woo Park,and Ho Lee. (2011). Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope OPTICS EXPRESS19, 4357.


[30] S. Tavaddod, M.A. Charsooghi1, F. Abdi, H.R. Khalesifard, and R. Golestanian.(2011)Probing passive diffusion of flagellated and deflagellatedEscherichia coli.Eur. Phys. J. E, 34. 16

[31] Li Xie, Tuba Altindal, SuddhashilChattopadhyay, and Xiao-Lun Wu.(2011)Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis.Proc. Natl Acad. Sci. USA, 108. 2246-2251

[32] David Saintillan and Michael J. Shelley.(2007)Orientational Order and Instabilities in Suspensions of Self-Locomoting RodsPhy Rev Lett,99.058102


[33] M E Cates (2012)Diffusive transport without detailed balance in motile bacteria: does microbiology needstatistical physics?Rep. Prog. Phys.75, 042601

[34] Einstein, A. ZurTheorie der BrownschenBewegung.(1906)Ann. Phys. 324, 371-381.

[35] Rongxin Huang, Isaac Chavez, Katja M. Taute, BranimirLukić, Sylvia Jeney, Mark G. Raizenand Ernst-Ludwig Florin, Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid(2011) nature Physcis. 7, 576–580.
指導教授 羅健榮(Chien-Jung Lo) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明