博碩士論文 101222018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.135.207.129
姓名 張振耀(Chen-Yao Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Stretching effect on the spin transport properties of single molecular junctions: A first-principle study)
相關論文
★ First-principles study in wurtzite InN bulk, thin film, and nanobelt★ The interfacial effect on spin-transfer torque in single molecular magnetic junctions: A first-principles study
★ Spin transport calculation for thiol-ended single-molecule magnetic junction★ Combined first-principles and tight-binding Hamiltonian study of Fe-MgO-Fe magnetic tunnel junctions
★ Anchoring Effect on Spin Transport in Amine-Ended Single-Molecule Magnetic Junctions: A First-Principles Study★ Analytic derivation for spin-transfer properties in magnetic tunnel junctions
★ Simulation for Cu-platted Front Side Metallization of Si-based Solar Cell★ 利用單能階緊密鍵結模型計算磁性穿隧接合的自旋傳輸特性
★ Electronic and Spin Transport Properties of Fe/MgO/Fe Magnetic Tunnel Junction: Combined First-Principles Calculation and TB-NEGF Method★ First-principles study in structural and elec-tronic properties of FeBaTiO3Fe multiferroic tunneling junction
★ Effect of contact geometry on the spin transfer calculation in amine-ended single-molecule magnetic junctions★ Spin Transport Properties in Magnetic Heterojunctions: Analytical derivation in Green’s function and Multi-reflection process
★ Modification of Distributional Exact Diagonalization Approach for Single Impurity Anderson Model★ Strain-Induced Magnetic-Nonmagnetic Transition in PtSe2 Nanoribbon: A First-Principles Study
★ 具電阻切換行為之氧化鋁磁性穿隧接面中低頻雜訊與傳輸機制研究★ Understanding Oscillatory Domain Wall Motion via Spin Waves Theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來隨著自旋電子學的蓬勃發展,對於「分子通道的傳導特性」的量測也有新的構想,像是將原本接在分子通道兩側的金屬電極換成具有磁性的金屬 (磁性電極/單分子/磁性電極),以移動STM探針來達到拉扯分子的效果,使分子通道隨著拉扯過程逐漸斷裂成「單分子通道」。
在理論模擬的部分,我們選用的單分子通道為BDT(硫-C_6 H_6-硫)與ADT(硫-C_3 H_6-硫)兩種,並將其接在鈷電極(111)中間。為了模擬真實的實驗狀況,我們緩緩的增加右側電極與分子的距離,使其具有類似STM探針拉扯的效果,然後計算系統的能量直到收斂,重複上述循環直至分子通道斷裂。我們發現以π-鍵為主的C_6 H_6 與 以σ-鍵為主的C_3 H_6,在分子被拉伸的過程中,分子會影響其附近的原子並產生截然不同的結果。我們也藉由改變左側電極的磁矩方向,使系統成為平行(↑↑/單分子/↑↑)與反平行(↓↓/單分子/↑↑)的狀況,我們發現由於中間通道的差異,會影響自旋的注入,更值得注意的是C_6 H_6在平行與反平行的兩種情況下,電導會有巨大的差異,並產生顯著的磁阻。
摘要(英) The manipulation of spin transport properties in FM/single molecule/FM junctions has attracted intensive attentions due to their potential applications in molecular spin electronics, where FM denotes the ferromagnetic materials. In this study, we employ the first-principles calculation with the Keldysh Green’s function method [8] to calculate the spin transport properties of the σ-saturated Co/Alkanedithiols(ADT)/Co and the π-saturated Co/Benzenedithiol(BDT)/Co single molecular junctions. In order to simulate the single molecular magnetic junction in realistic experimental system [5], we stretch the junction by increasing the distance between two Co electrodes in small steps, optimize again, and continued to do so, until the junction is broken down. The calculated total energy, bond lengths, and bond angles conclude that the central molecule indeed plays an important role on the stretching process and the breakdown situation. Once we obtain the relaxed junction geometry under stretching process, we employ the DFT+NEGF+LDA calculation to calculate the spin-polarized transmission spectra and PDOS’s for both PC and APC situations. For both junctions, the dramatic variation from the highly spin-polarized transmission in PC to the non-spin-polarized transmission in APC indicates the possibility for the high MR value under bias. However, the more conductive BDT molecule enhances the spin transport probabilities near EF may be a promising candidate for the molecular spintronics application.
關鍵字(中) ★ 分子通道
★ 磁性
★ 自旋電子學
關鍵字(英) ★ single molecular junction
★ first principle
★ spintronic
論文目次 Chapter1 Introduction 1
Chapter2 Density Functional theory 4
2.1 Overview 4
2.1.1 Hartree-Fock approximation 5
2.1.2 Hohenberg-Kohn theorem 6
2.1.3 Kohn-Sham equation 7
2.1.4 Local Density Approximation 9
2.1.5 Generalized gradient approximations 9
2.1.6 Pseudopotentials 9
2.2 Non-Equilibrium Green’s function method 10
2.2.1 Self-Consistent in NEGF-DFT calculation 10
2.2.2 Transmission 12
2.2.3 Density of states 12
Chapter3 Computational Details 14
Chapter4 Discussions 16
4.1 Structural Relaxation during Stretching 16
4.2 Spin Transport Properties in Parallel Configuration 23
4.3 Spin Transport Properties in Anti-parallel Configuration 29
Chapter5 Summary 34

參考文獻 [1] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J.M. Tour. Conductance of molecular junction. Science 278, 252-254 (1997)
[2] M. Di Ventra, S. T. Pantelides, and N. D. Lang. First Principle Calculation of Transport Properties of a Molecule Device. Phys. Rev. Lett. 84,979 (2000)
[3] B. Xu, and N. J. Tao. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 301, 1221 (2003)
[4] X. Xiao, B. Xu, and N. J. Tao. Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol. Nano Lett. 4, 267 (2004)
[5] B. Q. Xu, X. L. Li, X. Y. Xiao, H. Sakaguchi, and N. J. Tao. Electromechanical and Conductance Swiching Properties of Single Oligothiophene Molecules. Nano let. 5, 1491-1495 (2005)
[6] S. M. Lindsay, and M. A. Ratner. Molecular Transport Junctions: Clearing Mists. Adv. Mater. 19, 23-31 (2007)
[7] N. J. Tao. Electron transport in molecular junctions. Nature Nanotech. 1, 173-181 (2006)
[8] Y.-H. Tang, V. M. K. Bagci, J. –H. Chen, and C. C. Kaun. Conductance of stretching Oligothiophene Single-Molecule Junctions: A First-Principle Study. J. Phys. Chem. C. 115, 25105-25108 (2011)
[9] S. Mandal, and R. Pati. What Determines the Single Reversal of Magnetoresistance in a Molecular Tunnel Junction? ACS Nano. 6, 3580 (2012)
[10] E. G. Emberly, and G. Kirczenow. Molecular spintronics: spin-dependent electron transport in molecular wires. Chemical Physics 281, 311-324 (2002)
[11] A.. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito. Towards molecular spintronics. Nature Mater. 4, 335-339 (2005)
[12] D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo. Nonlinear Spin Current and Magnetoresistance of Molecular Tunnel Junctions. Phys. Rev. Lett. 96, 166804 (2006)
[13] Z. Ning, Y. Zhu, J. Wang, and H. Guo. Quantitative Analysis of Nonequilibrium Spin Injection into Molecular Tunnel Junctions. Phys. Rev. Lett. 100, 056803 (2008)
[14] I. Zutic, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and applications. Review of Modern Physics. 76 (2004)
[15] S. Sanvito. Molecular spintronics: The rise of spinterface science Nature Physics 6, 562-564 (2010)
[16] S.Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky. General Green’s-function formalism for transport calculations with s p d Hamiltonians
and giant magnetoresistance in Co- and Ni-based magnetic multilayers. Phys. Rev. B. 59, 11 936 (1999)
[17] J. Taylor, H. Guo, and J. Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 63, 245407 (2001)
[18] A. P. Jauho, N. S. Wingreen, and Y. Meir. Time-dependent transport in interacting and noninteracting resonant-tunneling system. Phys. Rev. B. 50, 5528 (1994)
[19] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press, New York. (1995)
[20] B. Wang, J. Wang, and H. Guo. Current Partition: A Nonequilibrium Green’s Function Approach. Phys. Rev. Lett. 82, 398 (1999)
[21] N. W. Ashcroft. N. D. Mermin. Solid State Physics. New York. (1976)
[22] P. Hohenberg, and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964)
[23] J. C. Slater. A Simplification of the Hartree-Fock Method. Phys. Rev. 81, 385 (1951)
[24] P. Giannozzi. Numerical Methods in Quantum Mechanics. Unuversity of Udine (2014)
[25] P. Hohenberg and W. Kohn. Inhomogeneous Eletron Gas. Phys. Rev. 136, B864 (1964)
[26] W. Kohn, and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133. (1965)
[27] http://www.quantum-espresso.org/
[28] http://quantumwise.com/
指導教授 唐毓慧(Yu-Hui Tang) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明