博碩士論文 101222024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.17.150.89
姓名 謝玉玲(Yu-Ling Hsieh)  查詢紙本館藏   畢業系所 物理學系
論文名稱 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測
★ 二維電子氣體中量子點接觸 與量子點製作及量測★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為
★ 單一超導量子位元控制與狀態讀取★ 超導量子干涉元件製作
★ 工程化超導電路上三維腔量子電動力學系統★ Characterizing single-qubit gate fidelity on superconducting qubits
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究超導體中電子傳輸行為,主要探討古柏電子對分裂(Cooper pair splitting, CPS)現象,古柏電子對是存在超導體內的量子糾纏態,可當作一個量子糾纏產生源應用於量子訊息傳輸。一般金屬/超導體/一般金屬的混合式元件中,一顆電子由一金屬進入超導體內,同時從另一界面反射出電洞至另一金屬內,在超導體中產生古柏電子對,這種發生在不同界面間的電子電洞轉換,稱交叉式安德烈夫反射(crossed Andreev reflection, CAR)。當元件組成為p型半導體/超導體/n型半導體(pSn),由於兩界面的傳輸載子分別為電洞與電子,此狀態可提高元件CAR效率。

我們利用兩塊單獨的單晶石墨烯與金屬鋁製作成石墨烯/鋁/石墨烯元件,低溫下鋁為超導態,為了能個別調控兩塊石墨烯化學勢(chemical potential),製作兩個獨立上閘極,將一邊石墨烯調控為p型;另一邊則是n型,使元件處於p型石墨烯/超導體/n型石墨烯以增加發生CAR傳輸行為。我們使用電流-電流相關性量測與非局域電壓量測方法觀察兩界面電荷傳輸關聯性並判斷電子傳輸行為,超導體能隙內非局域電子傳輸有兩種方式,分別為CAR與彈性共同穿隧(elastic cotunneling, EC)。

元件製作上,我們沒有成功使用上閘極個別調控兩塊石墨烯載子濃度與種類,只能利用下閘極同時調控兩塊石墨烯,無法將元件確實調控成pSn,因此對於元件的操控自由度大幅減小。在電流-電流相關性量測與非局域電壓量測皆觀察到EC傳輸行為,而CAR只在非局域電壓量測觀察到,並且當調控下閘極改變石墨烯濃度使元件在靠近pSn組成時CAR較明顯,與理論相符合。

摘要(英) We study electronic transport properties in superconductor and focus on Cooper pair splitting (CPS) phenomena. Cooper pair in superconductor is a quantum entangled object and could split into two spatially-separate normal metals via crossed Andreev reflection (CAR). It can be taken as a source of entangled electrons in quantum teleportation. The efficiency of CAR can be enhanced in a system consist of p-type semiconductor/superconductor/n-type semiconductor (pSn), due to either electron or hole is missing in superconductor/semiconductor interfaces.

We used two single crystal graphene to fabricate graphene/aluminum/graphene device and measured it below Al superconducting critical temperature. In order to tune two pieces of graphene separately to p-type and n-type, we made two independent top gates. Two kinds of electronic transport, CAR and elastic cotunneling (EC) are considered in the superconducting gap. We observed the correlation of two graphene/aluminum junctions by current-current correlation and nonlocal voltage measurements.

In our experiments, we did not successfully tune the carrier density of graphene by top gate. Therefore, we can not make pSn devices reliably. The carrier densities of both graphene can be tuned only by bottom gate, which decreases the tuning capability of our device. We observed EC by current-current correlation and nonlocal voltage measurements, but CAR was observed by nonlocal voltage measurement. When the device was tuned near pSn region, CAR was more obvious. The result is consistent with the theoretical prediction.

關鍵字(中) ★ 超導體
★ 石墨烯
★ 古柏電子對分裂
★ 交叉式安德烈夫反射
關鍵字(英)
論文目次 目錄

摘要 I

Abstract II

誌謝 III

目錄圖目錄 IV

圖目錄 V

表目錄 VIII

第一章 緒論 1

1-1 前言 1

1-2 超導體、BCS理論與古柏電子對 2

1-3 超導體與金屬界面電子傳輸行為:安德烈夫反射(Andreev reflection, AR) 4

1-4 NSN元件超導能隙內兩種電子傳輸行為:交叉式安德烈夫反射(crossed Andreev reflection, CAR)與彈性共同穿隧(elastic cotunneling, EC) 7

1-5 電荷不平衡(charge imbalance, CI) 9

1-6 石墨烯(Graphene) 10

1-7 文獻探討與動機 13

第二章 元件設計與製備 19

2-1 元件設計 20

2-2 石墨烯成長 20

2-3 元件製程 23

2-4 高溫退火 28

2-5 元件樣品打線至樣品載台 28

2-6 低溫測量系統 29

第三章 元件性質與實驗量測方法 31

3-1 元件結構幾何形狀說明 31

3-2 石墨烯性質量測 32

3-3 元件超導量測 38

3-4 電流-電流相關性量測 42

3-5 非局域電壓量測 45

第四章 實驗結果與討論 49

4-1 石墨烯性質 49

4-2 彈性共同穿隧(EC) 50

4-3 安德烈夫反射(CAR) 53

第五章 結論 57

參考資料 59

參考文獻 參考資料

1. Feynman, R.P., Simulating physics with computers. International journal of theoretical physics, 1982. 21(6): p. 467-488.

2. Onnes, H.K., The discovery of Superconductivity. Commun. Phys. Lab, 1911. 12: p. 120.

3. Meissner, W. and R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften, 1933. 21(44): p. 787-788.

4. V.L. Ginzburg and L.D. Landau, Z.E.T.F., 1064 (1950).

5. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of superconductivity. Physical Review, 1957. 108(5): p. 1175.

6. 張裕恒、李玉芝, 超導物理 1992, 儒林圖書公司.

7. Mermin, N.W.A.a.N.D., Solid State Physics. 1976, Harcourt.

8. Fröhlich, H., Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Physical Review, 1950. 79(5): p. 845-856.

9. Kleine, A., Experiments on nonlocal processes in NS devices. 2010, University of Basel.

10. Blonder, G., M. Tinkham, and T. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Physical Review B, 1982. 25(7): p. 4515.

11. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.

12. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.

13. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.

14. Novoselov, K., et al., Two-dimensional gas of massless Dirac fermions in graphene. nature, 2005. 438(7065): p. 197-200.

15. Veldhorst, M. and A. Brinkman, Nonlocal Cooper Pair Splitting in a pSn Junction. Physical Review Letters, 2010. 105(10): p. 107002.

16. Schindele, J., A. Baumgartner, and C. Schönenberger, Near-unity Cooper pair splitting efficiency. Physical review letters, 2012. 109(15): p. 157002.

17. Russo, S., et al., Experimental observation of bias-dependent nonlocal Andreev reflection. Physical review letters, 2005. 95(2): p. 027002.

18. 柯億謙, 石墨烯與超導金屬介面的電子穿隧行為, 物理學系2014, 國立中央大學.

19. Luo, Z., et al., Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. Acs Nano, 2011. 5(11): p. 9154-9160.

20. Rai-Choudhury, P.H.o.M., and Microfabrication, " Spie Optical Engineering Press, 1994.

21. Meyer, J.C., et al., The structure of suspended graphene sheets. Nature, 2007. 446(7131): p. 60-63.

22. Miyazaki, H., et al., Resistance modulation of multilayer graphene controlled by the gate electric field. Semiconductor Science and Technology, 2010. 25(3): p. 034008.

23. Lin, Y.-C., et al., Graphene annealing: how clean can it be? Nano letters, 2011. 12(1): p. 414-419.

24. BlueFors, BF‐LD250 CRYOGEN‐FREE DILUTION REFRIGERATOR SYSTEM User manual. 2011.

25. Cochran, J.F. and D.E. Mapother, Superconducting Transition in Aluminum. Physical Review, 1958. 111(1): p. 132-142.

指導教授 陳永富(Yung-Fu Chen) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明