博碩士論文 101222025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.190.156.80
姓名 周欣毅(Hsin-Yi Chou)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用國際太空站上的反物質磁譜儀精確測量宇宙射線中的反質子與質子通量比的時間變化
(Measurement Time Variation of the Antiproton-to-Proton Flux Ratio with the Alpha Magnetic Spectrometer on the International Space Station)
相關論文
★ 宇宙射線中的質子能譜★ 建構空氣簇射探測器及測量海平面宇宙射線通量
★ 宇宙射線中正電子和電子的能譜★ 宇宙射線中的氦原子核能譜
★ 建構粒子能譜探測器及量測海平面上質子能譜分布★ 偵測大氣內水平行進之緲子用的帶電粒子偵測器陣列之可行性研究
★ 在康卜吞成像光譜儀內的gamma射線事件的分析★ Study of Zγ-> e+e-γ Process with CMS Detector at Large Hadron Collider
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 康卜吞成像光譜儀數據讀出系統
★ 質子照影成像使用GEANT4蒙特卡羅模擬研究★ LHC phenomenology and renormalization of Georgi-Machacek model
★ Carbon Flux Analysis with the AMS-02 Experiment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們提出一種針對高能物理實驗的軌跡演算法處理非高斯探測器效應,它使用完整的傳播模型預測粒子軌跡以及靈活參數化模型(FPM算法),以描述非高斯探測器效應的表現。FPM軌跡演算法顯著提升測量的分辨解析度速度、剛度(每單位電荷的動量)以及質量。
利用國際太空站(ISS)上的反物質磁譜儀(AMS)精確測量宇宙射線中的反質子與質子通量比在絕對剛度區間1GV至525GV,並從2011年5月19日至2019年10月29日期間收集6.92億質子跟81萬的反質子。反質子與質子通量比在~30GV達到最大值,其譜指數在高剛度時為零。
利用國際太空站上的反物質磁譜儀精確測量宇宙射線中的反質子與質子通量比的時間變化在絕對剛度區間1GV至45.1GV,並從2011年5月至2019年10月期間(由於AMS的TTCS關閉,故BR2427至BR2474除外。)收集6.78億質子跟78萬的反質子。這些數據允許研究在太陽磁極性反轉期間的剛度和電荷符號依賴性。反質子與質子通量比以及電子與正電子的通量比的時間變化顯示出相同的振幅剛性依賴性在絕對剛度高於2GV時,以及兩者在過渡期的週期(持續時間)剛度獨立性。兩者之間的時間延遲在過渡期間顯示出剛性依賴性。其值約1年在絕對剛度低於3GV,並在~7GV處為零。
摘要(英) We present a new tracking algorithm for high energy physics experiments dedicated to handling the non-Gaussian detector effects. It uses a comprehensive propagation model to predict the particle trajectory, as well as flexible and parameterized models (FPM method), to describe non-Gaussian detector effects. The performance of the FPM tracking algorithm shows significant improvements in the measurement resolution of velocity, rigidity (momentum per unit charge), and mass.
A precision measurement of the antiproton-to-proton flux ratio in primary cosmic rays in absolute rigidity range from 1 to 525 GV is presented based on ∼6.92 billion proton events and ∼0.81 million antiproton events, collected by the Alpha Magnetic Spectrometer (AMS), on the International Space Station (ISS) from May 19. 2011, to October 29, 2019. The antiproton-to-proton flux ratio reaches a maximum at ∼ 30 GV, and its spectral index crosses zero at high rigidity.
A precision time variation measurement of the antiproton-to-proton flux ratio in the absolute rigidity range from 1.0 GV to 45.1 GV as a function of Bartels rotation (BR; 27 days), from May 2011 to October 2019, excluded period BR2472-BR2474 which is TTCS-OFF in the AMS, is presented based on ∼6.78 billion proton events and ∼0.78 million antiproton events collected by the AMS on the ISS. These data allow studies of the rigidity and charge-sign dependence during the polarity reversal of the solar magnetic field. The time variation of the antiproton-to-proton flux ratio and the electron-to-positron flux ratio show the same rigidity dependence on the amplitude of the transition when absolute rigidity above 2 GV, and the rigidity independence on the period (duration) of the transition. The time delay of the transition between two flux ratios shows the rigidity dependence. Its value reaches ∼1 year when absolute rigidity below 3GV, and crosses zero at ∼7 GV.
關鍵字(中) ★ 反物質磁譜儀
★ 宇宙射線
★ 磁極性反轉
★ 太陽磁場
★ 反質子
★ 軌跡演算法
關鍵字(英) ★ AMS
★ cosmic rays
★ polarity reversal
★ solar magnetic field
★ antiproton
★ tracking algorithm
論文目次 1 Introduction 29
2 Cosmic Rays in the Galaxy 31
2.1 Experimental Observations ............................ 31
2.1.1 Energy Spectra............................... 31
2.1.2 Chemical Composition........................... 33
2.2 Galactic CosmicRay................................ 38
2.2.1 The Galaxy................................. 38
2.2.2 Cosmic Ray Propagation.......................... 39
2.2.3 Measurements................................ 42
2.3 Solar Modulation.................................. 44
2.3.1 Solar Wind ................................. 44
2.3.2 GCR Transport Equation.......................... 44
2.3.3 Force-Field Approximation ........................ 45
2.3.4 Charge-Sign Dependent Effect....................... 46
2.4 Earth’s Magnetic Field............................... 49
2.5 Dark Matter Search ................................ 52
2.5.1 Dark Matter Search Using Antiparticles ................. 52
3 The Alpha Magnetic Spectrometer 57
3.1 The AMS Detector................................. 57
3.1.1 The Coordinate System .......................... 57
3.1.2 Permanent Magnetic and Silicon Tracker................. 58
3.1.3 Time-of-Flight Counters (TOF)...................... 60
3.1.4 Anti-Coincidence Counters (ACC) .................... 60
3.1.5 Transition Radiation Detector (TRD) .................. 60
3.1.6 Ring Imaging Cherenkov Detector(RICH)................ 61
3.1.7 Electromagnetic Calorimeter(ECAL) .................. 62
3.1.8 Particle Identification ........................... 62
3.2 Trigger and Data Acquisition (DAQ)....................... 63
3.3 Calibration and Test Beam ............................ 66
3.4 Data Correction and Monte Carlo Simulation .................. 66
4 The Tracking Algorithm using Flexible and Parameterized Models 69
4.1 Introduction..................................... 69
4.2 Propagation Model................................. 72
4.2.1 Lorentz Force................................ 72
4.2.2 Multiple Scattering............................. 73
4.2.3 Ionization Energy Loss........................... 74
4.2.4 Bremsstrahlung Energy Loss ....................... 76
4.2.5 Numerical Integration Method ...................... 76
4.3 Measurement Models................................ 78
4.3.1 The Symmetrical Multi-Gaussian Model ................. 78
4.3.2 The Approximate Landau-Gaussian Model............... 80
4.3.3 Robust Statistical Method......................... 83
4.4 Minimization Method ............................... 86
4.5 Track Reconstruction................................ 88
4.6 Performances .................................... 92
4.6.1 MC Simulations .............................. 92
4.6.2 Flight Data................................. 94
4.7 Summary ......................................101
5 Antiproton-to-Proton Flux Ratio 103
5.1 Event Selection and Data Samples ........................104
5.1.1 Real Time Information (RTI) .......................105
5.1.2 Geomagnetic Rigidity Cutoff .......................105
5.1.3 General Selection of Events ........................106
5.2 Measurement Strategy ...............................108
5.2.1 The Low Rigidity Region(1.00-13.0GV) ......... .......109
5.2.2 The Intermediate Rigidity Region(13.0-60.3GV) ...........113
5.2.3 The High Rigidity Region(60.3-525.0GV)...............114
5.3 Flux and Flux Ratio ................................118 5.3.1 Exposure Time ...............................118 5.3.2 5.3.2 Trigger Efficiency..............................119 5.3.3 Effective Acceptance ............................119 5.3.4 Antiproton-to-Proton Flux Ratio .....................120
5.4 Systematic Errors..................................123 5.4.1 Event Selection Uncertainties .......................123
5.4.2 Effective Acceptance Uncertainties ....................123
5.4.3 Rigidity Measurement Uncertainties ...................125
5.4.4 Summary of Errors.............................126
5.5 The Antiproton-to-Proton Flux Ratio ......................132
5.5.1 Fine Structure of the FluxRatio .....................132
5.6 The Time Variation of the Antiproton-to-Proton Flux Ratio .......... 135
5.6.1 Measurement Strategy and Result ....................135
5.6.2 Charge-Sign Dependent Effect.......................139
5.7 Summary ......................................146
6 Conclusion and Outlook 147
6.1 Charge Reconstruction...............................148
6.2 Continued Observations to 2024 and Beyond........ ........... 150
A Supplemental Materials of the Tracking Algorithm 151
A.1 Units, Constants, and Definitions .........................151
A.2 Density Effect Correction .............................153
A.3 Runge-Kutta-Nystrom Method .......................... 153
B Tables 155
B.1 The Antiproton-to-Proton Flux Ratio ...................... 155
Bibliography 159
參考文獻 [1] William Hanlon. http://www.physics.utah.edu/ whanlon/spectrum.html.
[2] K.A. Olive. Review of particle physics. Chinese Physics C, 40(10):100001, oct 2016.
[3] Thomas K. Gaisser and Todor Stanev. High-energy cosmic rays. Nuclear Physics A, 777:98 – 110, 2006. Special Isseu on Nuclear Astrophysics.
[4] Thomas K. Gaisser, Ralph Engel, and Elisa Resconi. Cosmic Rays and Particle Physics. Cambridge University Press, 2 edition, 2016.
[5] SILSO World Data Center.
[6] AMS Collaboration. Observation of complex time structures in the cosmic-ray electron and positron fluxes with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 121:051102, Jul 2018.
[7] D.F. Smart and M.A. Shea. A review of geomagnetic cutoff rigidities for earth- orbiting spacecraft. Advances in Space Research, 36(10):2012 – 2020, 2005. Solar Wind-Magnetosphere-Ionosphere Dynamics and Radiation Models.
[8] AMS Collaboration. Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett., 122:041102, Jan 2019.
[9] Alessandro Cuoco, Michael Krämer, and Michael Korsmeier. Novel dark matter con- straints from antiprotons in light of ams-02. Phys. Rev. Lett., 118:191102, May 2017.
[10] Michael Korsmeier, Fiorenza Donato, and Nicolao Fornengo. Prospects to verify a possible dark matter hint in cosmic antiprotons with antideuterons and antihelium. Phys. Rev. D, 97:103011, May 2018.
[11] AMS Collaboration. High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 gev with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 113:121101, Sep 2014.
[12] V. Bindi, G.M. Chen, H.S. Chen, E. Choumilov, V. Choutko, A. Contin, A. Lebedev, Y.S. Lu, N. Masi, A. Oliva, F. Palmonari, L. Quadrani, and Q. Yan. Calibration and performance of the ams-02 time of flight detector in space. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 743:22 – 29, 2014.
[13] T. Räihä, A. Bachlechner, B. Beischer, C.H. Chung, H. Gast, S. Schael, and T. Sieden- burg. Monte carlo simulations of the transition radiation detector of the ams-02 exper- iment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 868:10 – 14, 2017.
[14] Measurement of the d/p ratio in cosmic rays with the ams-02 experiment. Nuclear and Particle Physics Proceedings, 306-308:80 – 84, 2019. CRIS 2018.
[15] Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted decision trees as an alternative to artificial neural networks for particle identifi- cation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 543(2):577 – 584, 2005.
[16] AMS Collaboration. Precision measurement of the proton flux in primary cosmic rays from rigidity 1 gv to 1.8 tv with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 114:171103, Apr 2015.
[17] AMS Collaboration. Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 117:091103, Aug 2016.
[18] Victor Franz Hess. Über beobachtungen der durchdringenden strahlung beisieben freiballonfahrten. Physikalische Zeitschrift, 13:1084–1091, 1912.
[19] Andreas Haungs, Heinigerd Rebel, and Markus Roth. Energy spectrum and mass composition of high-energy cosmic rays. Reports on Progress in Physics, 66(7):1145– 1206, jun 2003.
[20] R.U. Abbasi et al. Observation of the ankle and evidence for a high-energy break in the cosmic ray spectrum. Physics Letters B, 619(3):271 – 280, 2005.
[21] Thomas K. Gaisser, Todor Stanev, and Serap Tilav. Cosmic ray energy spectrum from measurements of air showers, 2013.
[22] Andrew W. Strong, Igor V. Moskalenko, and Vladimir S. Ptuskin. Cosmic-ray propa- gation and interactions in the galaxy. Annual Review of Nuclear and Particle Science, 57(1):285–327, 2007.
[23] R.U. Abbasi et al. Measurement of the flux of ultra high energy cosmic rays by the stereo technique. Astroparticle Physics, 32(1):53 – 60, 2009.
[24] Bruce T. Draine. Physics of the Interstellar and Intergalactic Medium. 2011.
[25] Nicola Tomassetti. Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation. Phys. Rev. D, 92:081301, Oct 2015.
[26] Andrew W. Strong and Igor V. Moskalenko. Propagation of cosmic-ray nucleons in the galaxy. The Astrophysical Journal, 509(1):212–228, dec 1998.
[27] Carmelo Evoli, Daniele Gaggero, Andrea Vittino, Giuseppe Di Bernardo, Mattia Di Mauro, Arianna Ligorini, Piero Ullio, and Dario Grasso. Cosmic-ray propagation with dragon2: I. numerical solver and astrophysical ingredients. Journal of Cosmology and Astroparticle Physics, 2017(02):015–015, Feb 2017.
[28] Vladimir Ptuskin. Propagation of galactic cosmic rays. Astroparticle Physics, 39-40:44 – 51, 2012. Cosmic Rays Topical Issue.
[29] AMS Collaboration. Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 120:021101, Jan 2018.
[30] Rainer Beck. Galactic and extragalactic magnetic fields. Space Science Reviews, 99(1):243–260, Oct 2001.
[31] E.S.SeoandV.S.Ptuskin.StochasticReaccelerationofCosmicRaysintheInterstellar Medium. Astrophys.J, 431:705, Aug 1994.
[32] R. Cowsik, Yash Pal, S. N. Tandon, and R. P. Verma. Steady state of cosmic-ray nuclei—their spectral shape and path length at low energies. Phys. Rev., 158:1238– 1242, Jun 1967.
[33] O. et al. Adriani. Measurement of the flux of primary cosmic ray antiprotons with energies of 60 mev to 350 gev in the pamela experiment. JETP Letters, 96(10):621– 627, Jan 2013.
[34] Zhili Weng. Antiproton flux and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Advances in Space Research, 2019.
[35] Elena Amato and Pasquale Blasi. Cosmic ray transport in the galaxy: A review. Advances in Space Research, 62(10):2731 – 2749, 2018. Origins of Cosmic Rays.
[36] Parker. Dynamics of the interplanetary gas and magnetic fields. Astrophys.J, 128:664, Nov 1958.
[37] E.N. Parker. The passage of energetic charged particles through interplanetary space. Planetary and Space Science, 13(1):9 – 49, 1965.
[38] Marius S. Potgieter. Solar modulation of cosmic rays. Living Reviews in Solar Physics, 10(1):3, Jun 2013.
[39] Claudio Corti, Marius S. Potgieter, Veronica Bindi, Cristina Consolandi, Christopher Light, Matteo Palermo, and Alexis Popkow. Numerical modeling of galactic cosmic-ray proton and helium observed by AMS-02 during the solar maximum of solar cycle 24. The Astrophysical Journal, 871(2):253, feb 2019.
[40] Edward C. Stone, Cummings, Heikkila Alan C., Bryant C., and Nand Lal. Cosmic ray measurements from voyager 2 as it crossed into interstellar space. Nature Astronomy, 3:1013–1018, Nov 2019.
[41] M. S. Potgieter, E. E. Vos, M. Boezio, N. De Simone, V. Di Felice, and V. Formato. Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Solar Physics, 289(1):391–406, Jan 2014.
[42] Etienne E. Vos and Marius S. Potgieter. NEW MODELING OF GALACTIC PRO- TON MODULATION DURING THE MINIMUM OF SOLAR CYCLE 23/24. The Astrophysical Journal, 815(2):119, dec 2015.
[43] Mathew J. Owens and Robert J. Forsyth. The heliospheric magnetic field. Living Reviews in Solar Physics, 10(1):5, Nov 2013.
[44] L. J. Gleeson and W. I. Axford. Solar modulation of galactic cosmic rays. Astrophysical Journal, 154:1011, Dec 1968.
[45] M.S. Potgieter. The charge-sign dependent effect in the solar modulation of cosmic rays. Advances in Space Research, 53(10):1415 – 1425, 2014. Cosmic Ray Origins: Viktor Hess Centennial Anniversary.
[46] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bo- gomolov, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, P. Carlson, M. Casolino, G. Castellini, C. De Santis, V. Di Felice, A. M. Galper, A. V. Karelin, S. V. Koldashov, S. A. Koldobskiy, S. Y. Krutkov, A. N. Kvashnin, A. Leonov, V. Malakhov, L. Marcelli, M. Martucci, A. G. Mayorov, W. Menn, M. Mergé, V. V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, R. Munini, G. Osteria, B. Panico, P. Papini, M. Pearce, P. Picozza, M. Ricci, S. B. Ricciarini, M. Simon, R. Sparvoli, P. Spillantini, Y. I. Stozhkov, A. Vacchi, E. Vannuccini, G. I. Vasilyev, S. A. Voronov, Y. T. Yurkin, G. Zampa, N. Zampa, M. S. Potgieter, and E. E. Vos. Time dependence of the electron and positron components of the cosmic radiation measured by the pamela experiment between july 2006 and december 2015. Phys. Rev. Lett., 116:241105, Jun 2016.
[47] Hilary V. Cane. Coronal mass ejections and forbush decreases. Space Science Reviews, 93, Jul 2000.
[48] V. Bindi, C. Corti, C. Consolandi, J. Hoffman, and K. Whitman. Overview of galactic cosmic ray solar modulation in the ams-02 era. Advances in Space Research, 60(4):865 – 878, 2017. Solar Energetic Particles, Solar Modulation and Space Radiation: New Opportunities in the AMS-02 Era.
[49] Erwan et al. Thébault. International geomagnetic reference field: the 12th generation. Earth, Planets and Space, 67:79, May 2015.
[50] Carl Störmer. The polar aurora. Oxford University Press, 1955.
[51] E. Komatsu et al. FIVE-YEARWILKINSON MICROWAVE ANISOTROPY PROBEOBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysi- cal Journal Supplement Series, 180(2):330–376, feb 2009.
[52] E. Komatsu et al. SEVEN-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 192(2):18, jan 2011.
[53] G. Hinshaw et al. NINE-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS. The Astrophysical Journal Supplement Series, 208(2):19, sep 2013.
[54] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys.J, 86:217, Oct 1937.
[55] Troy A. Porter, Robert P. Johnson, and Peter W. Graham. Dark matter searches with astroparticle data. Annual Review of Astronomy and Astrophysics, 49(1):155–194, 2011.
[56] AMS Collaboration. Towards understanding the origin of cosmic-ray electrons. Phys. Rev. Lett., 122:101101, Mar 2019.
[57] Pasquale Blasi and Elena Amato. Positrons from pulsar winds, 2010.
[58] Gaëlle Giesen, Mathieu Boudaud, Yoann Génolini, Vivian Poulin, Marco Cirelli, Pierre Salati, and Pasquale D. Serpico. AMS-02 antiprotons, at last! secondary astrophysical component and immediate implications for dark matter. Journal of Cosmology and Astroparticle Physics, 2015(09):023–023, sep 2015.
[59] Su-Jie Lin, Xiao-Jun Bi, and Peng-Fei Yin. Investigating the dark matter signal in the cosmic ray antiproton flux with the machine learning method. Phys. Rev. D, 100:103014, Nov 2019.
[60] Leila Ali Cavasonza, Henning Gast, Michael Krämer, Mathieu Pellen, and Stefan Schael. Constraints on leptophilic dark matter from the AMS-02 experiment. The Astrophysical Journal, 839(1):36, apr 2017.
[61] Z. Zhang, X.-H. Sun, G.-N. Tong, Z.-C. Huang, Z.-H. He, A. Pauw, J. van Es, R. Bat- tiston, S. Borsini, E. Laudi, B. Verlaat, and C. Gargiulo. Stable and self-adaptive performance of mechanically pumped co2 two-phase loops for ams-02 tracker thermal control in vacuum. Applied Thermal Engineering, 31(17):3783 – 3791, 2011. SET 2010 Special Issue.
[62] Z. Zhang, Z.L. Weng, T.X. Li, Z.C. Huang, X.H. Sun, Z.H. He, J. van Es, A. Pauw, E. Laudi, and R. Battiston. Co2 condensation heat transfer coefficient and pressure drop in a mini-channel space condenser. Experimental Thermal and Fluid Science, 44:356 – 363, 2013.
[63] F. Giovacchini. Performance in space of the ams-02 rich detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 766:57 – 60, 2014. RICH2013 Proceedings of the Eighth International Workshop on Ring Imaging Cherenkov Detectors Shonan, Kanagawa, Japan, December 2-6, 2013.
[64] AMS Collaboration. First result from the alpha magnetic spectrometer on the interna- tional space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 gev. Phys. Rev. Lett., 110:141102, Apr 2013.
[65] Matteo Graziani. Electron/proton separation and analysis techniques used in the ams- 02 (e++e-) flux measurement. Nuclear and Particle Physics Proceedings, 273-275:2351– 2353, 04 2016.
[66] Hsin-Yi Chou, Yuan-Hann Chang, Han-Sheng Li, and Yi Yang. A new track fitting algorithm dedicated for handling non-gaussian detector effects using flexible and pa- rameterized models. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, page 164446, 2020.
[67] Lars Bugge and Jan Myrheim. Tracking and track fitting. Nuclear Instruments and Methods, 179(2):365 – 381, 1981.
[68] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://ceres-solver.org.
[69] C. Patrignani et al. Review of particle physics. Chin. Phys., C40(10):100001, 2016.
[70] Gerald R. Lynch and Orin I. Dahl. Approximations to multiple coulomb scattering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 58(1):6 – 10, 1991.
[71] Hans Bichsel. A method to improve tracking and particle identification in tpcs and silicon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 562(1):154 – 197, 2006.
[72] R Fruhwirth. A gaussian-mixture approximation of the bethe-heitler model of electron energy loss by bremsstrahlung. Computer Physics Communications, 154(2):131 – 142, 2003.
[73] H. Bethe, Manchester, W. Heitler, and Bristol. On the stopping of fast particles and on the creation of positive electrons. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 146(856):83–112, 1934.
[74] LarsBuggeandJanMyrheim.Afastrunge-kuttamethodforfittingtracksinamagnetic field. Nuclear Instruments and Methods, 160(1):43 – 48, 1979.
[75] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bun- dle adjustment — a modern synthesis. In Bill Triggs, Andrew Zisserman, and Richard Szeliski, editors, Vision Algorithms: Theory and Practice, pages 298–372, Berlin, Hei- delberg, 2000. Springer Berlin Heidelberg.
[76] Are Strandlie and Rudolf Frühwirth. Track and vertex reconstruction: From classical to adaptive methods. Rev. Mod. Phys., 82:1419–1458, May 2010.
[77] J.C. Hart and D.H. Saxon. Track and vertex fitting in an inhomogeneous magnetic field. Nuclear Instruments and Methods in Physics Research, 220(2):309 – 326, 1984.
[78] XudongSun,J.ToddHoeksema,YangLiu,andJunweiZhao.ONPOLARMAGNETIC FIELD REVERSAL AND SURFACE FLUX TRANSPORT DURING SOLAR CYCLE 24. The Astrophysical Journal, 798(2):114, jan 2015.
[79] Hans Bichsel. Straggling in thin silicon detectors. Rev. Mod. Phys., 60:663–699, Jul 1988.
[80] R. M. Sternheimer. The density effect for the ionization loss in various materials. Phys. Rev., 88:851–859, Nov 1952.
[81] R. M. Sternheimer. The density effect for the ionization loss in various materials. Phys. Rev., 89:1309–1309, Mar 1953.
[82] R.M. Sternheimer, M.J. Berger, and S.M. Seltzer. Density effect for the ionization loss of charged particles in various substances. Atomic Data and Nuclear Data Tables, 30(2):261 – 271, 1984.
[83] The Runge-Kutta-Nystrom Method. National Bureau of Standards Handbook, proce- dure 25.5.20.
指導教授 張元翰(Yuan-Hann Chang) 審核日期 2020-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明