博碩士論文 101222028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.116.239.195
姓名 郭安立(An-Li Kuo)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(LHC phenomenology and renormalization of Georgi-Machacek model)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文介紹了Georgi-Machacek (GM) 模型裡所預測的自旋為零的純量粒子組成,並討論這些在GM模型裡的粒子間如何交互作用以及衰變。近年來,在歐洲大強子對撞機(LHC)發現質量125GeV類希格斯粒子後,許多相關實驗數據也相繼產生,藉此得以限制GM模型裡的參數範圍,論文裡也提供並討論了如何證實GM模型的方法。隨著實驗量測的精準度不斷的提升,理論所預測的量也須更為精確,因此本篇論文將會探討希格斯粒子與玻色子(W和Z粒子)、類希格斯粒子與費米子以及三個類希格斯粒子彼此間交互作用在高階費曼圖中所獲得的輻射修正(radiative correction)。
摘要(英) We review the basics of the Higgs sector, the electroweak sector and the Yukawa sector in the Georgi-Machacek (GM) model, theoretical constraints of the vacuum stability and perturbative unitarity, both at tree level, and indirect experimental constraints, such as the oblique corrections, the Zbb vertex, and 125-GeV Higgs signal strengths. The decay of the Higgs bosons both at tree level and 1-loop level are also discussed.

Current CERN Large Hadron Colllider (LHC) data on the 125 GeV standard model-like Higgs boson suggest the possibility of larger Higgs boson couplings with the weak gauge bosons, g_{hVV}, than those in the standard model (SM). We use the GM model as an explicit model to realize such a scenario. We find that g_{hVV} couplings can be larger than the SM value by a factor of about 1.3 maximally in the parameter region consistent with the current Higgs boson search data and allowed by various other constraints. We then show how the modified g_{hVV} couplings lead to enhancements in various weak boson scattering processes. This can be clearly observed as excesses in the transverse mass distributions at around 125 GeV and also the mass of heavy Higgs bosons.
We then derive the mose general sets of viable mass spectra of the exotic Higgs bosons in the GM model that are allowed by the above-mentioned constraints. Branching ratios of various cascade decay channels of the doubly-charged Higgs boson in the 5 representation, the singly-charged Higgs boson in 3 and the singlet Higgs boson are further computed. As one of the most promising channels for discovering the model, we study the prospects for detecting the doubly-charged Higgs boson that is produced via the vector boson fusion process and decays into final states containing a pair of same-sign leptons at the 14-TeV LHC and a 100-TeV future pp collider. For this purpose, we evaluate acceptance times efficiency for signals of the doubly-charged Higgs boson with general viable mass spectra and compare it with the SM background estimates.
Finally, we calculate 1-loop radiative corrections to the hZZ, hWW, hff and hhh couplings in the GM model. A comparison of the 1-loop radiative corrected hZZ and hWW couplings in the models with next-to-simplest Higgs sectors satisfying the electroweak rho parameter equal to 1 at tree level: the real Higgs singlet model, the two-Higgs doublet models, and the Georgi-Machacek model, is given. Under theoretical and current experimental constraints, the three models have different correlations between the deviations in the hZZ and hWW couplings from the standard model predictions. In particular, we find for each model predictions with no overlap with the other two models.
關鍵字(中) ★ 希格斯
★ 基本粒子
★ 對撞機
關鍵字(英) ★ LHC
★ Higgs
論文目次 1 Introduction 1
2 Lagrangian 4
2.1 Higgs sector . . . . . . . . . . . . . . . . . . . 4
2.2 Electroweak sector . . . . . . . . . . . . . . . . 12
2.3 Yukawa sector . . . . . . . . . . . . . . . . . . 15
3 Decay widths of Higgs bosons 20
3.1 Tree level decays . . . . . . . . . . . . . . . . 20
3.2 Loop-induced decays . . . . . . . . . . . . . . . 24
4 Constraints 29
4.1 Theoretical constraints . . . . . . . . . . . . . 29
4.2 Experimental constraints . . . . . . . . . . . . . 30
4.2.1 Electroweak precision tests . . . . . . . . . . 30
4.2.2 Z-pole observable Rb . . . . . . . . . . . . . . 31
4.2.3 h signal strengths . . . . . . . . . . . . . . . 32
5 Enhancements of weak gauge boson scattering processes at the CERN LHC 33
5.1 Introduction . . . . . . . . . . . . . . . . . . . 33
5.2 The model . . . . . . . . . . . . . . . . . . . . 35
5.3 Data fitting . . . . . . . . . . . . . . . . . . . 36
5.4 Vector boson fusion processes . . . . . . . . . . 39
5.5 Conclusions . . . . . . . . . . . . . . . . . . .. 46
6 Searches of exotic Higgs bosons in general mass spectra of the GM model at the LHC 48
6.1 Introduction . . . . . . . . . . . . . . . . . . . 48
6.2 Constraints . . . . . . . . . . . . . . . . . . . 49
6.3 Search of viable exotic Higgs boson mass spectra and decay branching
ratios of exotic Higgs bosons . . . . . . . . . . . . 51
6.4 Prospects for observing signatures of Georgi-Machacek model at 14-TeV LHC . . . . . . . . . . . . . . . . . 68
6.5 Conclusions . . . . . . . . . . . . . . . . . . . 76
7 Radiative corrections to h couplings in the GM model 78
7.1 Introduction . . . . . . . . . . . . . . . . . . . 78
7.2 The model . . . . . . . . . . . . . . . . . . . . .79
7.3 Renormalization . . . . . . . . . . . . . . . . . 81
7.3.1 Gauge sector . . . . . . . . . . . . . . . . . . 81
7.3.2 Scalar sector . . . . . . . . . . . . . . . . . 85
7.3.3 Yukawa sector . . . . . . . . . . . . . . . . . 90
7.4 Renormalized hV V vertex . . . . . . . . . . . . . 91
7.5 Renormalized hf ¯ f vertex . . . . . . . . . . . . 93
7.6 Renormalized hhh vertex . . . . . . . . . . . . . 94
7.7 Gauge invariant scalar two-point functions . . . . 97
7.7.1 Mixing of CP-even Higgs bosons . . . . . . . . . 98
7.7.2 Mixing of CP-odd Higgs bosons . . . . . . . . . 99
7.8 Numerical analysis . . . . . . . . . . . . . . . 101
7.9 Radiative corrected h couplings . . . . . . . . . 104
8 Radiative corrections to Higgs couplings with weak gauge bosons in custodial multi-Higgs models 109
8.1 Introduction . . . . . . . . . . . . . . . . . . 109
8.2 Concrete models . . . . . . . . . . . . . . . . . 110
8.3 Numerical results . . . . . . . . . . . . . . . . 112
8.4 Conclusions . . . . . . . . . . . . . . . . . . . 114
A Coupling 116
A.1 Triple-scalar coupling . . . . . . . . . . . . . 117
A.2 Quartic-scalar coupling . . . . . . . . . . . . . 119
A.3 Gauge coupling . . . . . . . . . . . . . . . . . 124
B The relations between di↵erent representations of the Higgs fields128
C Mass eigenstates of the Higgs boson with no non-equal to 0 129
D Gauge boson two point functions 132
E 1PI diagrams to tadpole 135
F Scalar boson two point functions 137
G Fermion two point functions 143
H 1PI diagrams to hVV coupling 145
I 1PI diagrams to hff coupling 153
J 1PI diagrams to hhh coupling 159
參考文獻 [1] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012)
[arXiv:1207.7235 [hep-ex]].
[2] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012)
[arXiv:1207.7214 [hep-ex]].
[3] J. Hisano and K. Tsumura, Phys. Rev. D 87, 053004 (2013) [arXiv:1301.6455
[hep-ph]].
[4] S. Kanemura, M. Kikuchi and K. Yagyu, Phys. Rev. D 88, 015020 (2013)
[arXiv:1301.7303 [hep-ph]].
[5] H. Georgi and M. Machacek, Nucl. Phys. B 262, 463 (1985).
[6] M. S. Chanowitz and M. Golden, Phys. Lett. 165B, 105 (1985).
[7] J. F. Gunion, R. Vega and J. Wudka, Phys. Rev. D 43, 2322 (1991).
[8] J. F. Gunion, R. Vega and J. Wudka, Phys. Rev. D 42, 1673 (1990).
[9] C. W. Chiang, A. L. Kuo and K. Yagyu, JHEP 1310, 072 (2013)
[arXiv:1307.7526 [hep-ph]].
[10] H. E. Logan and M. A. Roy, Phys. Rev. D 82, 115011 (2010) [arXiv:1008.4869
[hep-ph]].
[11] A. Falkowski, S. Rychkov and A. Urbano, JHEP 1204, 073 (2012)
[arXiv:1202.1532 [hep-ph]].
[12] S. Chang, C. A. Newby, N. Raj and C. Wanotayaroj, Phys. Rev. D 86, 095015
(2012) [arXiv:1207.0493 [hep-ph]].
[13] J. A. Grifols and A. Mendez, Phys. Rev. D 22, 1725 (1980).
[14] M. Capdequi Peyranere, H. E. Haber and P. Irulegui, Phys. Rev. D 44, 191
(1991).
[15] S. Kanemura, Phys. Rev. D 61, 095001 (2000) [hep-ph/9710237].
[16] H. E. Haber and H. E. Logan, Phys. Rev. D 62, 015011 (2000) [hepph/
9909335].
[17] S. Godfrey and K. Moats, Phys. Rev. D 81, 075026 (2010) [arXiv:1003.3033
[hep-ph]].
[18] C. W. Chiang, T. Nomura and K. Tsumura, Phys. Rev. D 85, 095023 (2012)
[arXiv:1202.2014 [hep-ph]].
[19] C. W. Chiang and K. Yagyu, JHEP 1301, 026 (2013) [arXiv:1211.2658 [hepph]].
[20] C. Englert, E. Re and M. Spannowsky, Phys. Rev. D 87, no. 9, 095014 (2013)
[arXiv:1302.6505 [hep-ph]].
[21] C. Englert, E. Re and M. Spannowsky, Phys. Rev. D 88, 035024 (2013)
[arXiv:1306.6228 [hep-ph]].
[22] K. Hartling, K. Kumar and H. E. Logan, Phys. Rev. D 90, no. 1, 015007 (2014)
[arXiv:1404.2640 [hep-ph]].
[23] C. W. Chiang, S. Kanemura and K. Yagyu, Phys. Rev. D 90, no. 11, 115025
(2014) [arXiv:1407.5053 [hep-ph]].
[24] K. Hartling, K. Kumar and H. E. Logan, Phys. Rev. D 91, no. 1, 015013 (2015)
[arXiv:1410.5538 [hep-ph]].
[25] C. W. Chiang, S. Kanemura and K. Yagyu, Phys. Rev. D 93, no. 5, 055002
(2016) [arXiv:1510.06297 [hep-ph]].
[26] C. W. Chiang and T. Yamada, Phys. Lett. B 735, 295 (2014) [arXiv:1404.5182
[hep-ph]].
[27] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990); Phys. Rev. D
46, 381 (1992).
[28] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva,
Phys. Rept. 516, 1 (2012).
[29] W. Y. Keung and W. J. Marciano, Phys. Rev. D 30, 248 (1984).
[30] M. Aoki, S. Kanemura and K. Yagyu, Phys. Rev. D 85, 055007 (2012)
[arXiv:1110.4625 [hep-ph]].
[31] G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160, 151 (1979).
[32] A. Djouadi, Phys. Rept. 457, 1 (2008) [hep-ph/0503172]; Phys. Rept. 459, 1
(2008) [hep-ph/0503173].
[33] M. Aoki and S. Kanemura, Phys. Rev. D 77, no. 9, 095009 (2008) Erratum:
[Phys. Rev. D 89, no. 5, 059902 (2014)] [arXiv:0712.4053 [hep-ph]].
[34] B. Grinstein, C. W. Murphy, D. Pirtskhalava and P. Uttayarat, JHEP 1405,
083 (2014) [arXiv:1401.0070 [hep-ph]].
[35] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001
(2016).
[36] G. Aad et al. [ATLAS and CMS Collaborations], JHEP 1608, 045 (2016)
[arXiv:1606.02266 [hep-ex]].
[37] J. Bagger, V. D. Barger, K. m. Cheung, J. F. Gunion, T. Han, G. A. Ladinsky,
R. Rosenfeld and C. P. Yuan, Phys. Rev. D 49, 1246 (1994) [hep-ph/9306256].
[38] J. Bagger, V. D. Barger, K. m. Cheung, J. F. Gunion, T. Han, G. A. Ladinsky,
R. Rosenfeld and C.-P. Yuan, Phys. Rev. D 52, 3878 (1995) [hep-ph/9504426].
[39] J. M. Butterworth, B. E. Cox and J. R. Forshaw, Phys. Rev. D 65, 096014
(2002) [hep-ph/0201098].
[40] M. S. Chanowitz, Czech. J. Phys. 55, B45 (2005) [hep-ph/0412203].
[41] A. Ballestrero, G. Bevilacqua and E. Maina, JHEP 0905, 015 (2009)
[arXiv:0812.5084 [hep-ph]].
[42] K. Cheung, C. W. Chiang and T. C. Yuan, Phys. Rev. D 78, 051701 (2008)
[arXiv:0803.2661 [hep-ph]].
[43] J. Chang, K. Cheung, C. T. Lu and T. C. Yuan, Phys. Rev. D 87, 093005
(2013) [arXiv:1303.6335 [hep-ph]].
[44] A. G. Akeroyd, Phys. Lett. B 442, 335 (1998) [hep-ph/9807409].
[45] M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Phys. Rev. D 87, no. 1,
015012 (2013) [arXiv:1211.6029 [hep-ph]].
[46] [CMS Collaboration], CMS-PAS-HIG-13-001.
[47] [ATLAS Collaboration], ATLAS-CONF-2013-012; ATLAS-CONF-2012-170;
ATLAS-CONF-2013-013; ATLAS-CONF-2013-030;
[48] [CMS Collaboration], CMS-PAS-HIG-13-002; CMS-PAS-HIG-13-003; CMSPAS-
HIG-13-004; CMS-PAS-HIG-13-005.
[49] C. W. Chiang and K. Yagyu, JHEP 1307, 160 (2013) [arXiv:1303.0168 [hepph]].
[50] [ATLAS Collaboration], ATLAS-CONF-2013-009.
[51] [CMS Collaboration], CMS-PAS-HIG-13-006.
[52] M. Carena, I. Low and C. E. M. Wagner, JHEP 1208, 060 (2012)
[arXiv:1206.1082 [hep-ph]].
[53] C. W. Chiang and K. Yagyu, Phys. Rev. D 87, no. 3, 033003 (2013)
[arXiv:1207.1065 [hep-ph]].
[54] M. Baak et al., Eur. Phys. J. C 72, 2205 (2012) [arXiv:1209.2716 [hep-ph]].
[55] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106,
128 (2011) [arXiv:1106.0522 [hep-ph]].
[56] V. D. Barger, A. D. Martin and R. J. N. Phillips, Phys. Lett. 125B, 339 (1983).
[57] V. D. Barger, T. Han and J. Ohnemus, Phys. Rev. D 37, 1174 (1988).
[58] T. Han, G. Valencia and S. Willenbrock, Phys. Rev. Lett. 69, 3274 (1992)
[hep-ph/9206246].
[59] T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D 68, 073005 (2003) [hepph/
0306109].
[60] P. Nason and C. Oleari, JHEP 1002, 037 (2010) [arXiv:0911.5299 [hep-ph]].
[61] P. Bolzoni, F. Maltoni, S. O. Moch and M. Zaro, Phys. Rev. Lett. 105, 011801
(2010) [arXiv:1003.4451 [hep-ph]].
[62] P. Bolzoni, F. Maltoni, S. O. Moch and M. Zaro, Phys. Rev. D 85, 035002
(2012) [arXiv:1109.3717 [hep-ph]].
[63] Y. Q. Fang, B. Mellado, S. Paganis, W. Quayle and Wu Sau Lan, ATL-PHYS-
2004-035, ATL-COM-PHYS-2003-043, CERN-ATL-COM-PHYS-2003-043.
[64] The ATLAS collaboration, ATLAS-CONF-2015-007, ATLAS-COM-CONF-
2015-011.
[65] V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 75, no. 5, 212
(2015) [arXiv:1412.8662 [hep-ex]].
[66] The ATLAS collaboration, ATL-PHYS-PUB-2014-016.
[67] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 113, no. 17, 171801
(2014) [arXiv:1407.6583 [hep-ex]].
[68] S. I. Godunov, M. I. Vysotsky and E. V. Zhemchugov, Phys. Lett. B 751, 505
(2015) [arXiv:1505.05039 [hep-ph]].
[69] G. Aad et al. [ATLAS Collaboration], JHEP 1503, 041 (2015) [arXiv:1412.0237
[hep-ex]].
[70] J. Alwall et al., JHEP 0709, 028 (2007) [arXiv:0706.2334 [hep-ph]].
[71] J. Alwall et al., JHEP 1407, 079 (2014) [arXiv:1405.0301 [hep-ph]].
[72] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006) [hepph/
0603175].
[73] J. de Favereau et al. [DELPHES 3 Collaboration], JHEP 1402, 057 (2014)
[arXiv:1307.6346 [hep-ex]].
[74] S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Phys. Rev. D 90, no. 7,
075001 (2014).
[75] S. Blasi, S. De Curtis and K. Yagyu, Phys. Rev. D 96, no. 1, 015001 (2017)
[arXiv:1704.08512 [hep-ph]].
[76] A. Sirlin, Phys. Rev. D 22, 971 (1980).
[77] W. J. Marciano and A. Sirlin, Phys. Rev. D 22, 2695 (1980); 31, 213 (1985).
[78] W. F. L. Hollik, Fortsch. Phys. 38, 165 (1990).
[79] A. Denner and T. Sack, Nucl. Phys. B 347, 203 (1990).
[80] K. Hagiwara, S. Matsumoto, D. Haidt and C. S. Kim, Z. Phys. C 64, 559 (1994)
Erratum: [Z. Phys. C 68, 352 (1995)] [hep-ph/9409380].
[81] S. Kanemura, M. Kikuchi and K. Yagyu, Phys. Lett. B 731, 27 (2014)
[arXiv:1401.0515 [hep-ph]].
[82] S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Phys. Rev. D 70, 115002
(2004) [hep-ph/0408364].
[83] N. K. Nielsen, Nucl. Phys. B 101 (1975) 173.
[84] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[85] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40, 3474 (1989).
[86] J. Papavassiliou, Phys. Rev. D 41, 3179 (1990).
[87] G. Degrassi and A. Sirlin, Phys. Rev. D 46, 3104 (1992).
[88] J. Papavassiliou and A. Pilaftsis, Phys. Rev. Lett. 80, 2785 (1998); Phys. Rev.
D 58, 053002 (1998).
[89] M. Krause, R. Lorenz, M. Muhlleitner, R. Santos and H. Ziesche, JHEP 1609,
143 (2016).
[90] S. Kanemura, M. Kikuchi, K. Sakurai and K. Yagyu, Phys. Rev. D 96, no. 3,
035014 (2017).
[91] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 114, no. 5, 051801
(2015).
[92] T. Barklow, J. Brau, K. Fujii, J. Gao, J. List, N. Walker and K. Yokoya,
arXiv:1506.07830 [hep-ex].
[93] S. Kanemura, M. Kikuchi and K. Yagyu, Nucl. Phys. B 907, 286 (2016).
[94] S. Kanemura, M. Kikuchi and K. Yagyu, Nucl. Phys. B 896, 80 (2015).
[95] G. Cynolter, E. Lendvai and G. Pocsik, Acta Phys. Polon. B 36, 827 (2005).
[96] N. G. Deshpande and E. Ma, Phys. Rev. D 18, 2574 (1978).
[97] S. Kanemura, T. Kubota and E. Takasugi, Phys. Lett. B 313, 155 (1993).
[98] G. Aad et al. [ATLAS Collaboration], JHEP 1508, 148 (2015); Phys. Rev. D
92, 092004 (2015); Eur. Phys. J. C 76, no. 1, 45 (2016); Phys. Lett. B 744,
163 (2015).
[99] G. Aad et al. [ATLAS Collaboration], ATLAS-CONF-2016-089.
[100] C. W. Chiang, A. L. Kuo and T. Yamada, JHEP 1601, 120 (2016).
[101] K. Hagiwara, S. Matsumoto, D. Haidt and C. S. Kim, Z. Phys. C 64, 559
(1994) Erratum: [Z. Phys. C 68, 352 (1995)] [hep-ph/9409380].
指導教授 蔣正偉 張元翰(Cheng-Wei Chiang Yuan-Hann Chang) 審核日期 2017-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明