博碩士論文 101222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.233.217.242
姓名 蕭翌登(Yi-Teng Hsiao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 細菌地毯微流道中的次擴散動力學
(Sub-diffusive Dynamics in Bacterial Carpet Microfluidic Channel)
相關論文
★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon★ hydrodynamic spreading of forces from bacterial carpet
★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為
★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究★ 雜質在假晶型碳矽合金對張力之熱穩定性影響
★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應
★ Thermal stability of supersaturated carbon incorporation in silicon★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們研究在低雷諾數環境下的集體動力學及流體力學。我們將大量的細菌鋪在玻璃基板上形成「細菌地毯」,並利用一些追蹤小粒子觀察流場變化。以上議題為一個有趣的非平衡動力問題。細菌擁有高效率的分子馬達鞭毛,可以在低雷諾數環境下有效運作。我們利用單鞭毛的溶藻弧菌(VIO5或NMB136),其特性是鞭毛的轉速可以利用溶液中納離子的濃度來調控。VIO5的鞭毛可以順時鐘及逆時鐘旋轉,並利用大角度的揮動互相切換。反之,NMB136的鞭毛只能逆時鐘旋轉。從實驗中,我們觀察到在VIO5的地毯中,鞭毛轉速較高及溶液黏滯係數較低時,追蹤粒子表現出有次擴散的動力學(Sub-diffusive dynamics)。反之,在NMB136的地毯中,並沒有觀察到上述現象。
為了更進一步了解上述次擴散動力學的原因,我們利用螢光技術來標記鞭毛,並觀察相鄰近的鞭毛運動方式,以及利用光學攝子來量測細菌地毯所產生的流場大小。從這些實驗中,我們推測流場變化的原因是由鞭毛集體運動所造成的。相鄰近的鞭毛運動會隨著轉速變高而有互相越來越相似的情況。由光學攝子所量測到的流場的大小,也有隨著轉速變高而有類似相變的趨勢變化。同時由於所量測到的流場的方向大都是垂直方向,我們參考Saffman所提出在低雷諾數環境下粒子受到水平剪切流場時會受到一個Saffman上升力(Saffman lift force)來解釋所觀察到的次擴散動力學。在細菌地毯產生的不均勻垂直流場下,Saffman上升力有可能讓追蹤粒子被吸引至高垂直流場的位置,造成粒子具有回到前一刻位置的傾向,而形成次擴散的動力學。
摘要(英) We investigate the collective dynamics in array formed by self-propelling particle (SPP) under low Reynolds number (Re) condition. This system is an interesting non-equilibrium issue to be explored. In microfluidic devices, Re is low due to small characteristic length scale and low inertial effect. The above constraints lead to non-rotational flow in microfluidics devices. Bacteria, as a kind of self-propelling particles, possess molecular motors that are able to perform highly efficient flagellum rotation even under low Re condition.
In this work, we form self-propelling particle array by depositing bacteria on treated surface in a microfluidic device. The formed high density bacterial carpet renders high density ensemble of freely rotating flagella that are able to exert thrust in the surrounding fluid. The microfluidic channel is composed of single polarly-flagellated Vibrio alginolyticus (VIO5 or NMB136) deposited glass substrates. The individual flagellum swimming speed is tuned by varying buffer sodium concentration. Hydrodynamic coupling strength is tuned by varying buffer viscosity. Particle tracking statistics shows high flagellum rotational rate and strong hydrodynamic coupling strength lead to collective sub-diffusive dynamics in VIO5 case, while not the case for NMB136.
The flick motions of the VIO5 could generate a thrust that propagates back to the original bacteria and exert a counteraction in the flow in between. In bacterial carpet condition, the suspended particle could experience an effectively confining action by the counteractions from all directions through hydrodynamic coupling. The NMB136 counterpart, however, could not generate strong thrust by rotational motion that could lead to strong anti-persistent motions in particle, thus no sub-diffusive dynamics.
According to the experiment observation, we find out a vertical force generated by bacterial carpet. It can be measured by optical tweezers. Interactions between neighboring flagella and force measurement show the forces may come from the collective flagella motion. At the low Reynolds number system, Saffman force pushes the tracer particles to the region of higher fluid velocity in the non-uniform flow. This is a physically probable mechanism to explain the sub-diffusive behavior.
關鍵字(中) ★ 次擴散動力學
★ 細菌地毯
關鍵字(英) ★ Sub-diffusive Dynamics
★ Bacterial Carpet
論文目次 Abstract i
Acknowledgements iii
Content iv
List of Figures v
1. Introduction 1
2. Background 4
2-1. Bacterial characteristic 5
2-2. Life at low Reynolds number 8
2-3. Synchronization and Collective Dynamics 13
2-4. Bacterial carpet 15
3. Experimental setup and measurement method 19
3-1. Cells and Cultures 19
3-2. Bacterial carpet 24
3-3. Microscope and particle tracking program 27
3-4. Mean square displacement (MSD) 29
4. Result and discussion 32
4-1. Sub-diffusive behavior on VIO5-made carpet 32
4-2. Strain-dependent dynamics and
size-dependent responses 34
4-3. Interactions between neighboring flagella 38
4-4. Force measurement 41
4-5. Saffman forces influence 44
5. Conclusions and Future work 48
Bibliography 50
Appendixes I Particle tracking program
參考文獻 [1]. N. Darnton, L. Turner, K. Breuer, and H. C. Berg, Biophys. J. 86, 1963 (2004).
[2]. N. Uchida and R. Golestanian, Phys. Rev. Lett. 104, 178103 (2010).
[3]. Rob Phillips, Jane Kondev, Julie Theriot, Physical Biology of the Cell
[4]. E. M. Purcell, Am. J. Phys. 45, 3 (1977)
[5]. Tamás Vicsek, and Anna Zafeiris, Physics Reports 517 71–140 (2012)
[6]. Yi-Teng Hsiao, Jing-Hui Wang, Yi-Chun Hsu, Chien-Chun Chiu, Chien-Jung Lo, Chia-Wen Tsao, and Wei Yen Woon Appl. Phys. Lett. 100, 203702 (2012)
[7]. Howard C. Berg, E. coli in Motion
[8]. Howard C. Berg, Phys. Today 53(1), 24 (2000)
[9]. Y Sowa, H Hotta, M Homma and A IshijimaJ. Mol. Biol. 327, 1043–1051 (2003)
[10]. Faber, T.E, Fluid Dynamics for Physicists
[11]. Daniel Goldfarb, Biophysics Demystified
[12]. Eric Lauga and Thomas R Powers, Rep. Prog. Phys. 72 (2009)
[13]. Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet Physical Review Letters 75, 1226 (1995)
[14]. John Toner, and Yuhai Tu, Physical Review Letters 75, 4326 (1995)
[15]. Ramin Golestanian, Julia M. Yeomans and Nariya Uchida, Soft Matter, 7, 3074–3082 (2011)
[16]. N. Li, S. Kojima, and M. Homma, Genes Cells 16, 985 (2011).
[17]. M. J. Kim and K. S. Breuer, Small 4, 111 (2008).
[18]. J. B. Segur and H. E. Oberstar, Ind. Eng. Chem. 43, 2117 (1951).
[19]. N. Uchida, Phys. Rev. Lett. 106, 064101 (2011).
[20]. Philip Nelson, Biological Physics
[21]. Jing-Hui Wang’s thesis
[22]. P. G. Saffman, ‘‘The lift force on a small sphere in a slow shear flow,’’ J. Fluid Mech. 22, 385 (1965); Corrigendum, ibid. 31, 624 (1968).
[23]. J. L. M. Poiseuille, Ann. Sci. Nat., vol. 5, pp. 111–, 1836.
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2013-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明