博碩士論文 101222033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:52.14.126.74
姓名 周若芸(Jo-Yun Chou)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(First-principles study in wurtzite InN bulk, thin film, and nanobelt)
相關論文
★ Stretching effect on the spin transport properties of single molecular junctions: A first-principle study★ The interfacial effect on spin-transfer torque in single molecular magnetic junctions: A first-principles study
★ Spin transport calculation for thiol-ended single-molecule magnetic junction★ Combined first-principles and tight-binding Hamiltonian study of Fe-MgO-Fe magnetic tunnel junctions
★ Anchoring Effect on Spin Transport in Amine-Ended Single-Molecule Magnetic Junctions: A First-Principles Study★ Analytic derivation for spin-transfer properties in magnetic tunnel junctions
★ Simulation for Cu-platted Front Side Metallization of Si-based Solar Cell★ 利用單能階緊密鍵結模型計算磁性穿隧接合的自旋傳輸特性
★ Electronic and Spin Transport Properties of Fe/MgO/Fe Magnetic Tunnel Junction: Combined First-Principles Calculation and TB-NEGF Method★ First-principles study in structural and elec-tronic properties of FeBaTiO3Fe multiferroic tunneling junction
★ Effect of contact geometry on the spin transfer calculation in amine-ended single-molecule magnetic junctions★ Spin Transport Properties in Magnetic Heterojunctions: Analytical derivation in Green’s function and Multi-reflection process
★ Modification of Distributional Exact Diagonalization Approach for Single Impurity Anderson Model★ Strain-Induced Magnetic-Nonmagnetic Transition in PtSe2 Nanoribbon: A First-Principles Study
★ 具電阻切換行為之氧化鋁磁性穿隧接面中低頻雜訊與傳輸機制研究★ Understanding Oscillatory Domain Wall Motion via Spin Waves Theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化銦是三五族的半導體材料,它具有比其它以氮為基底的半導體還要狹窄的能隙(大約0.7-0.9 eV) 。
我們運用第一原理中的LDA(local density approximation)搭配Quantum Espresso軟體計算氮化銦在塊材、切面為±(0001)的薄膜與切面為±(0001)和±(11 ̅00)的奈米帶在維度變化時的晶格常數,進而分析氮化銦在極性面(0001)與非極性面(11 ̅00)原子結構的變化。我們探討在±(0001)的薄膜上,由於各個原子陰電性不同使表面電荷轉移,導致銦與氮兩端因為表面氫或表面接氧而有不同的結構變化。另外,我們發現當為裸面的薄膜時,氮化銦薄膜的臨界厚度為12層,而層數小於12層時,薄膜會由sp3鍵結的纖鋅礦轉變為sp2的石墨結構。有趣的是,在表面均接氫的奈米帶中,我們發現由於銦與氮陰電性的不同,造成在非極性面上鍵結傾斜的情形。
為了解決LDA在計算能隙時低估的問題,我們加入了PSF(pseudofunction method)與PSFEXX(matrix method for the calculation of nonlocal exchange potential)方法,利用直接去計算非局域的交換能來修正並計算出與實驗值(0.7-0.8eV)符合的能隙(0.7eV)。我們認為在低維度的氮化銦中,由於表面態較多,若能運用此方法去精準計算出其能隙與能帶結構,那將會成為分析結構現象的重要角色。
摘要(英) InN is an important compound in group-III nitride semiconductors and has attracted much attention due to its debated narrow energy gap (0.7-0.9eV). Recently, Hu et al. proposed a single crystalline InN nanobelts, and then Dong et. al. observed the X-ray absorption (XAS) and the X-ray emission (XES) spectra of InN thin film and nanobelt.
We first employed the first-principles calculation, i.e. Quantum Espresso, with the local-density approximation (LDA) to study the structural properties of InN bulk, thin film in wurtzite (0001) direction, and nanobelt enclosed by wurtzite ±(0001) and ±(11 ̅00) planes. For the InN thin film, the saturation effect of H-saturated, O-saturated, and bare surface on the polar (0001) plane are considered. The subtle surface charge transfer, due to the different electronegativities between ions, gives rise to the opposite In- and N-terminated surface geometry between H- and O-saturated thin films. Moreover, our DFT+LDA calculation suggests that the critical thickness of bare InN polar thin film is 6-bilayer, since we observed the structural transfer from the wurtzite structure with sp3 bond geometry in 6-bilayer case into the graphitic structure with sp2 bond geometry in 4-bilayer case. Interesting, for the H-saturated InN nanobelt, we observe the tilted interfacial In-N bonds, due to the smaller (larger) electronegativity between In (N) and H ions.
In order to resolve the underestimate of energy gaps of N-based semiconductors, the newly proposed matrix method for the nonlocal exchange potential with the pseudofunction (PSFEXX) method is employed and then gives excellent agreement between calculated 0.7eV (6.0eV) and experimental 0.7-0.8eV (6.2eV). We strongly believe that this PSFEXX method may provide more reliable structural and electronic properties in low-dimensional InN materials, where those misleading surface states near the zero or negative energy gap of InN by LDA or GGA calculation can be efficiently corrected and then play a significant role on the structural properties.
關鍵字(中) ★ first-principles
★ wurtzite
★ structure properties
關鍵字(英)
論文目次 Chapter1 Introduction and Motivation 1
Chapter2 Theory 4
2.1 Density Functional Theory 4
2.1.1 The variational principle and Hartree-Fock Methods 4
2.1.2 The Hohenberg-Kohn theorem 5
2.1.3 The self-consistent Kohn-Sham theorem 7
2.2 Pseudopotential method for DFT calculation 9
2.2.1 Bloch’s theorem and the cutoff energy 9
2.2.2 Pseudopotentials 10
2.3 Pseudofunction (PSF) method 11
2.3.1 The basis set used in the PSF method 11
2.3.2 Calculation of Hamiltonian matrix elements 11
2.3.3 Calculation of the electron density 12
2.4 Calculation for exchange-correlation energy 13
2.4.1 The local-density approximation 13
2.4.2 The generalized gradient approximation 13
2.4.3 A matrix method for nonlocal exchange potential 14
Chapter3 Computational details 17
3.1 Calculation for Nitride-based Bulks 17
3.1.1 Structural Geometry 17
3.1.2 Parameters for Structural Relaxation 18
3.1.3 Parameters for Electronic Properties 18
3.2 Calculation for InN films 20
3.3 Calculation for InN nanobelts 22
Chapter4 Results and Discussions 23
4.1 Bulk Properties for Nitride-based materials 23
4.1.1 Structural Properties 23
4.1.2 Electronic Properties 24
4.2 Structural Properties of InN Films 28
4.2.1 Calculation for H-saturated and O-saturated InN Films 28

4.2.2 Calculation for Bare InN Films 33
4.3 Structural properties of InN Nanobelts 35
Chapter5 Summary 37
References 38


參考文獻 [1] S. N. Mohammad and H. Morkoc, Prog. Quantum Electron. 20, 361(1996)
[2] V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994)
[3] K. T. Tsen, C. Poweleit1, D. K. Ferry, Hai Lu and William J. Schaff, Appl. Phys. Lett. 86, 222103 (2005)
[4] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu,W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)
[5] V. Y. Davydov et al., Phys. Status Solidi B 230, R4 (2002)
[6] V. Y. Davydov et al., Phys. Status Solidi B 234, 787 (2002)
[7] F. Fuchs, J. Furthm¨uller, F. Bechstedt, M. Shishkin, and G. Kresse,Phys. Rev. B 76, 115109 (2007)
[8] F. Bechstedt and J. Furthm¨uller, J. Cryst. Growth 246, 315 (2002)
[9] M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)
[10] F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)
[11] B. Holm, U. von Barth, Phys. Rev. B 57, 2108 (1998)
[12] J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)
[13] F. Bechstedt, F. Fuchs, and J. Furthm¨uller, Phys. Status Solidi A 207, 1041 (2010)
[14] F. Bechstedt, F. Fuchs, and G. Kresse, Phys. Status Solidi B 246, 1877 (2009)
[15] Hu, M. S., Wang, W. M., Chen, T. T., Hong, L. S., Chen, C. W., Chen, C. C., Chen, Y. F., Chen, K. H. and Chen, L. C., Adv. Funct. Mater. 16,537–541 (2006)
[16] C. L. Dong et al., manuscript is in preparation.
[17] Colin L. Freeman, Frederik Claeyssens, Neil L. Allan, and John H. Harding, Phys. Rev. Lett. 96, 066102 (2006)
[18] C. Tusche, H. L. Meyerheim, and J. Kirschner, Phys. Rev. Lett. 99, 026102 (2007)
[19] J. C. Slater, Phys. Rev. 81, 385 (1951)
[20] M. Born and J. R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927)
[21] V. Fock, Z. Phys. 61, 126 (1930)
[22] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
[23] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
[24] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)
[25] J. P. Perdew and Y. Wang, Phys. Rev. B 46, 12947 (1992)
[26] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt Saunders, Philadelphia, p. 113 (1976)
[27] D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494-1497 (1979)
[28] J. D. Joannopoulos, Th. Starkloff, and Marc Kastner, Phys. Rev. Lett. 38, 660-663 (1977)
[29] Th. Starkloff and J. D. Joannopoulos, Phys. Rev. B 16, 5212-5215 (1977)
[30] David Vanderbilt, Phys. Rev. B 41, 7892-7895 (1990)
[31] R. V. Kasowski, M. -H. Tsai, T. N. Rhodin, and D. D. Chambliss, Phys. Rev. B 34, 2656 (1986)
[32] Andersen, O.K., Phys. Rev. B 12, 3060 (1975)
[33] M.-H. Tsaia, Eur. Phys. J. B 84, 29–35 (2011)
[34] A. G¨orling, Phys. Rev. B 53, 7024 (1996)
[35] http://www.quantum-espresso.org/
[36] Nicola Marzari, David Vanderbilt, Alessandro De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999)
[37] H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976)
[38] K. Kim, W.R.L.Lambrecht, B. Segall, Phys. Rev. B 50, 1502 (1994)
[39] I.Vurgaftmana, J.R.Meyer, L.R.Ram-Mohan, J. Appl. Phys. 89 (2001)
[40] J.M.Wagner, F.Bechstedt, Phys. Rev. B 66, 115202 (2002)
[41] J.Serrano, A Rubio, E Hernandez, A.Munoz, A. Mujica, Phys. Rev. B 62 (2000)
[42] M.Van Schilfgaarde, A.Sher, A.B.Chen, J. Cryst. Growth. 178 (1997)
[43] C.Stampfl, C.G. Van de Walle, Phys.Rev. B 59, 5521 (1999)
[44] J.H.Edgar, Electronic Materials Information Service (EMIS) Datareviews Series, Institution of Electrical Enginneers, London (1994)
[45] A. Trampert, O. brandt, K. H. Ploog, Semiconductors and Semimetals Vol. 50, Academic, San Diogo (1998)
[46] M Ueno, M. Yoshida, A. Onodera, O Shimomura, K. Takemura, Phys. Rev. B 49 14 (1994)
[47] Qing Tang, Yafei Li, Zhen Zhou, Yongsheng Chen and Zhongfang Chen, Appl. Mater. Interfaces, 2 (8) 2442–2447 (2010)
[48] Qing Tang, Yao Cui, Yafei Li, Zhen Zhou and Zhongfang Chen, J. Phys. Chem. C, 115 (5) 1724–1731 (2011)
[49] Dangxin Wu, M. G. Lagally, and Feng Liu, Phys. Rev. Lett. 107, 236101 (2011)
[50] Freeman C. L., Claeyssens, F. Allan, N. L., Phys. Rev. Lett. (2006)
[51] A. Janotti, D. Segev, Ch.G. Van de Walle, Phys. Rev. B 74, 045202 (2006)
[52] J. Kaczkowski, ACTA PHYSICA POLONICA A Vol. 121 (2012)
[53] P.G. Moses, M. Miao, Q. Yan, Ch.G. Van de Walle, J. Chem. Phys. 134, 084703 (2011)
[54] O. Madelung Springer, Berlin, Semiconductors-Basic Data, 2nd revised ed. (1996)
[55] M. Shishkin, G. Kresse, Phys. Rev. B 74, 035101 (2006)
[56] Data in Science and Technology, Semiconductor:Group IV Elements and III-V compounds, edited by R. Poerschke, O Madelung (Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, 1991)
[57] V.Yu. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsen, S.V. Ivanov, F. Bechstedt, J. Furthm¨uller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Status Solidi (b) 229, R1 (2002)
[58] Chinkyo Kim, I. K. Robinson, Jaemin Myoung, Kyuhwan Shim, Myung‐Cheo Yoo and Kyekyoon Kim, Appl. Phys. Lett. 69, 2358 (1996)
[59] “Table of periodic properties of the elements”, Sargent-Welch Scientific Company, Skokie, Illinois (1980)
[60] A. Terentjevs, A. Catellani, D. Prendergast, and G. Cicero, Phys. Rev. B 82, 165307 (2010)
指導教授 唐毓慧(Yu-Hui Tang) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明