博碩士論文 101222037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.174.43.27
姓名 洪世軒(Shih-Hsuan, Hung)  查詢紙本館藏   畢業系所 物理學系
論文名稱 由熱對火電腦模擬探討多層石墨烯在碳化矽基板上的成長
(Epitaxial growth of multilayer graphene on 15R-SiC by simulated annealing technique)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 介面膠體叢聚現象的理論研究★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究
★ 膠體相圖之理論計算★ 膠體、棒狀粒子混合系統之相圖的理論分析
★ 利用時間序列的統計方法研究金屬叢集的動力學★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
★ 金銅合金金屬叢集(N=38)的磁性性質研究★ 膠體、盤狀粒子混合系統的兩階段動態相變區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們可以藉由Erhart-Albe 版本的Tersoff 作用勢[41] 加上模擬退火方式在碳化矽基板上以磊晶生成石墨稀。在這篇文章裡面,我們成功的生成三層石墨烯並且用數值方式檢查了結合能,平均鍵長,石墨烯與基底的距離,多層石墨烯之間距離,平滑程度以及石墨烯生成面積(覆蓋)百分比。對於一層石墨烯,生成溫度在15R-SiC和6H-SiC 兩種不同結構中是一樣的,都是1200 K。相較於兩層石烯,15R-SiC生成溫度是1000 K,溫度略低於6H-SiC 生成兩層石墨烯之溫度。會產生這種結果是由於結構上的差異,也就是碳化矽基板的表層在能量最佳化後對應到不同結構的雙層碳原子(C-rich bilayer)所造成的結果。我們使用兩種不同的退火流程來比較三層石墨烯,透過結果分析因而採用了這篇文章所描述的方式。我們也有比對相關的實驗數值,像是石墨烯與基底的距離以及多層石墨烯之間的間距。
摘要(英) The epitaxial graphene is grown for the first time on 15R-SiC(0001) substrate by
employing a critically evaluated empirical potential, namely, the Tersoff-type Erhart-
Albe potential [41] in the simulated annealing method. The factors that affect the
growth process were studied. Three layers of graphene were successfully grown and
they were examined by the calculated binding energy per atom, average bond-length,
inter-layer and graphene-substrate separation distances, roughness parameter and
graphene area coverage. We find that the threshold temperature at which one-layer graphene emerges is 1200 K which is the same as using 6H-SiC substrate. For the emergence of two-layer graphene, the 15R-SiC substrate yields 1000 K, which is lower than that from 6H-SiC substrate. The reasons for the disparity in threshod temperature grown on 6H- and 15R-SiC substrates are investigated and interpreted in terms of their geometrical differences. For the growth of three-layer graphene, we compared two annealing processes and discussed the difficulties in applying the same simulated method. A thorough analysis leads us to the present means of grow three-layer graphene. Also, we compared with related experiments for the various distance of separation parameters between the overlaid layers of graphene and substrate surface.
關鍵字(中) ★ 碳化矽
★ 石墨烯
關鍵字(英) ★ silicon-carbide
★ graphene
論文目次 I. INTRODUCTION.................................................................................................... 1
II. BACKGROUND AND THEORY ....................................................... 3
A. Structure of sic Polytypes ....................................................... 3
B. Empirical potential ....................................................... 8
III. SIMULATION PROCEDURE ...................................................... 12
A. Preparation of the sic Substrate ...................................................... 12
B. Preparation of carbon-rich layers ...................................................... 16
a. One-layer graphene ...................................................... 16
b. Two-layer graphene ...................................................... 18
c. Three-layer graphene ...................................................... 19
IV. NUMERICAL RESULTS AND DISCUSSION ...................................................... 23
A. One-layer graphene ...................................................... 23
B. Two- and three-Layer Graphene ...................................................... 28
C. Comparison of C-rich bilayers overlaid on 6H-SiC and 15R-SiC substrates ...................................................... 36
V. CONCLUSIONS ...................................................... 39
VI. REFERENCES .......................................................40
參考文獻 [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
[2] Y. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Nature 438, 201 (2005).
[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).
[4] C.L. Kane, Nature 438, 168 (2005).
[5] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov and A.K. Geim, PNAS 102, 10451 (2005).
[6] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Nat. Mater. 8, 203 (2009).
[7] S.V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
[8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau Nano Lett. 8, 902 (2008).
[9] S. Ghosh, D.L. Nika, E.P. Pokatilov1 and A.A. Balandin, New J. Phys. 11, 095012 (2009).
[10] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).
[11] M.M. Shokrieh and R. Rafiee, Mat. Design 31, 790 (2010).
[12] C. Li, T.A. Chou, Int. J. Solid Struct. 40, 2487 (2003).
[13] G.V. Lier, C.V. Alsenoy, V.V. Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).
[14] K.N. Kudin, G.E. Scuseria, and B.I. Yakobson, Phys. Rev. B 64, 235406 (2001).
[15] J. R. Xiao, B.A. Gama, and Jr. J.W. Gillespie, Int. J. Solid Struct. 42, 3075 (2005).
[16] C.D. Reddy, S. Rajendran, and K.M. Liew, Int. J. Nanosci. 4, 631 (2005).
[17] Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, and F. Wang, Nature 459, 820 (2009).
[18] A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).
[19] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Nano. Lett. 8, 3498 (2008).
[20] S.M. Paek, E. Yoo, and I. Honma, Nano Lett. 9, 72 (2009).
[21] D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, and J. Liu, Acs Nano 3, 907 (2009).
[22] C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, and J. Hone, Nature Nanotech. 4, 861 (2009).
[23] Z. Lee, K.J. Jeon, A. Dato, R. Erni, T.J. Richardson, M. Frenklach, and V. Radmilovic, Nano Lett. 9, 3365 (2009).
[24] F.N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
[25] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446, 60 (2007).
[26] A. J. Van Bommel, J. E. Crombeen, and A. van Tooren, Surf. Sci. 48, 463 (1975).
[27] I. Forbeaux, J.-M. Themlin, and J.-M. Debever, Phys. Rev. B 58, 16396 (1998).
[28] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
[29] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, Solid State Commun., 143, 92 (2007).
[30] N. Jakse, R. Arifin and S.K. Lai, Conden. Matter Phys. 14, 43802 (2011).
[31] T. L. Yoon, T. L. Lim, T. K. Min, S. H. Hung, N. Jakse, S.K. Lai, J. Chem. Phys. 139, 204702 (2013).
[32] C. Tang, L. Meng, H. Xiao, and J. Zhong, J. Appl. Phys. 103, 063505 (2008).
[33] C. Tang, L. Meng, L. Sun, K. Zhang, and J. Zhong, J. Appl. Phys. 104, 113536 (2008).
[34] F. Varchon, P. Mallet, J.-Y. Veuillen, and L. Magaud, Phys. Rev. B 77, 235412 (2008).
[35] C. Lampin, C. Priester, C. Krzeminski, and L. Magaud, J. Appl. Phys. 107, 103514 (2010).
[36] Y. Hwang, E. K. Lee, H. Choi, K. H. Yun, M. Lee and Y. C. Chung, J. Appl. Phys. 111, 104324 (2012).
[37] SiC Materials and Devices, Y. S. Park, vol 52, p. 2-11, (Academic Press, New York, 1998).
[38] P. Pirouz and J. W. Yang, Ultramicroscopy 51, 189 (1993).
[39] L. S. Ramsdell in SiC Materials and Devices, edited Y. S. Park, Chap. 2, p.5 (Academic Press, London, 1998).
42
[40] SiC Materials and Devices, M. Shur, S. Rumyantsev and M. Levinshtein, Vol. 1, p.3, (World Scientific, Singapore, 2006).
[41] P. Erhart and K. Albe, Phys. Rev. B 71, 035211 (2005).
[42] J. Tersoff, Phys. Rev. B 37, 6991 (1988).
[43] J. Tersoff, Phys. Rev. B 38, 9902 (1988).
[44] J. Tersoff, Phys. Rev. B 39, 5566 (1989).
[45] LAMMPS code, http://lammps.sandia.gov.
[46] J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. Stepniewski, and J. M. Baranowski, J. Appl. Phys. 105, 023503 (2009).
[47] A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).
[48] J. Hass, W. A. de Heer and E. H. Conrad, J. Phys.: Condens. Matter 20 (2008) 323202.
[49] S. W. Poon, W. Chen, A. T. S. Wee, and E. S. Tok, Phys. Chem. Chem. Phys. 12, 13522 (2010).
指導教授 賴山強(San-Kiong, Lai) 審核日期 2015-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明