博碩士論文 101222601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:54.237.183.249
姓名 陳學金(Hock-King Ting)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Convergent Cross Mapping (CCM) 方法對預測因果關係的評估
(Assessment of Convergent Cross Mapping (CCM) Method by Using time-series data of Known Causality)
相關論文
★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits★ 二維非彈性顆粒子之簇集現象
★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究★ 顆粒體複雜流動之研究
★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究★ 帶電高分子吸附在帶電的表面上之研究
★ 自我纏繞繩節高分子之物理★ 高分子鏈在強拉伸流場下之研究
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 最佳化網路成長模型的理論研究
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ DNA在微通道的熱泳行為★ 皮膚細胞增生與腫瘤生長之模擬
★ 耦合在非線性系統中的影響:模型探討以及非線性分析★ 從網路節點時間序列分析網路特性並應用在體外培養神經及心臟細胞
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在許多不同的研究領域,揭開兩個物理量X和Y之間的因果關係
是一項重要的工作。X→Y表示X影響Y。Convergent Cross
Mapping (CCM) 是一個檢測因果關係的方法。這論文在介紹了
CCM 的運作原理之後,我們將使用兩個已知因果關係的時間序列
X(t)和Y(t) 去對CCM 進行評估,且 X(t)和Y(t) 具有相同或不同
(即混沌、週期振盪以及穩定點) 的動力學行為。當X(t)和Y(t) 同
步的時候,CCM 無法區分 X和Y 的因果關係。最後,這論文將討
論透過三個節點和一百個節點的環網絡對CCM 所進行的評估結果。
摘要(英) In many different areas of research, it is important to uncover the interaction or causal relation between two dynamical quantities (such as X(t) and Y (t)). If X is the cause and Y is the effect, then X will influence/drive Y . Such a causality or directed interaction can be denoted as: X drives Y . Convergent Cross Mapping (CCM) is a method used to detect the causality between X and Y .
In this thesis, the working principles behind CCM (i.e. state space reconstruction and cross estimation) will first be introduced. Then, the CCM method is assessed by using it to detect the causality of X and Y , in which they were generated by solving a system of coupled dynamical equations numerically. Since X(t) and Y(t) are two time series of known causality (e.g. X drives Y), the accuracy of the CCM method could be assessed by plotting sigma(X drives Y) versus gXY and sigma(Y drives X) versus gXY on the same graph, where sigma is a CCM accuracy indicator and gXY is the
coupling strength of X drives Y. For further assessment, CCM method is applied to detect the causality of X and Y of different combinations of dynamical behaviours (i.e. chaos, periodic oscillations and stable fixed point). It was found that when X(t) and Y(t) synchronize, CCM is unable to distinguish the true causality from the non-existing causality.
From the 3-node (X drives Y drives Z) motifs analysis, it was found that CCM method would misinterpret the existence of X drives Z, when both X and Y synchronize. Apart from that, the existence of the conflicting information would also affect the sigma value computed by the CCM method.
Finally, the sigma versus g curves for 2-node and 100-node (ring network) of different connectivities and ranges of g are plotted on the same graph. This is to investigate the universality of the sigma versus g relation. It was found that the true causality curve of 2-node unidirectional case fits the Power Law: sigma proportional to g^(-0.6). There
are a number of cases of points which fall on or close to the true causality curve of 2-node unidirectional case. The deviations of the rests of the points from the true causality curve are either due to the A drives B drives C effect or the conflicting information problem or both.
關鍵字(中) ★ 因果關係 關鍵字(英) ★ Convergent Cross Mapping
★ CCM
★ causality
論文目次 1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . ..1
1.2 Introduction to Convergent Cross Mapping (CCM) Method . . . . . 6
1.3 Terminology in Nonlinear Dynamics . . . . . . . . . . . . . . . . . . 10
1.3.1 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Chaotic/Strange Attractor . . . . . . . . . . . . . . . . . . . 14
1.3.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Methodology 21
2.1 Procedures in CCM Performance Analysis . . . . . . . . . . . . . . 21
2.1.1 Data Management Before CCM Analysis . . . . . . . . . . . 21
2.1.2 Steps in Performing the CCM Analysis . . . . . . . . . . . . 22
2.2 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Investigation of the Existence of a Universal Empirical Relation Between sigma and Coupling Strength g . . . . . . . . . . 32
2.2.2 A Study of 3-node Configuration . . . . . . . . . . . . . . . 32
2.2.3 Performing a Network (100 Nodes) Study . . . . . . . . . . . 33

3 Results & Discussions 35
3.1 Testing the accuracy of the CCM Method (Using 2-node motifs) . . 35
3.1.1 2 Independent (Random) Time Series . . . . . . . . . . . . . 35
3.1.2 2 Identical (Random) Time Series . . . . . . . . . . . . . . . 38
3.1.3 2 Random Time Series With a Phase Difference . . . . . . . 40
3.1.4 2 Chaotic Lorenz Systems . . . . . . . . . . . . . . . . . . . 42
3.1.5 2 Glycolytic Oscillators (Slow Oscillator Driving the Fast Oscillator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.6 2 Glycolytic Oscillators (Fast Oscillator Driving the Slow Oscillator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.7 Chaotic Lorenz Drives Lorenz Oscillator . . . . . . . . . . . 53
3.1.8 Lorenz Oscillator Drives Chaotic Lorenz . . . . . . . . . . . 56
3.1.9 Chaotic Lorenz Drives Stable Fixed Point Dynamics . . . . . 61
3.1.10 Coupled Logistic Map of 2 Nodes . . . . . . . . . . . . . . . 63
3.2 3-node motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Network Study (1D ring with 100 nodes) . . . . . . . . . . . . . . . 79
3.4 Testing the accuracy of the CCM Method (2-node motifs with noise) 92
3.4.1 2 coupled map lattice (CML) of Logistic Maps with noise (chaotic when uncoupled) . . . . . . . . . . . . . . . . . . . 92
3.4.2 2 CML of Logistic maps with noise (periodic when uncoupled) 99

4 Conclusion, Future Work & Recommendation 105
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Future Work & Recommendation . . . . . . . . . . . . . . . . . . . 109

Bibliography 111
參考文獻 [1] D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks, Nature 393, 440-442 (1998).
[2] E. S. C. Ching, P. Y. Lai, and C. Y. Leung, Reconstructing weighted networks from dynamics, Phys. Rev. E 91, 030801(R) (2015).
[3] E. S. C. Ching, P. Y. Lai, and C. Y. Leung, Extracting connectivity from dynamics of networks with uniform bidirectional coupling, Phys. Rev. E 88, 042817 (2013).
[4] B. Cummins et al., On the efficacy of state space reconstruction methods in determining causality, SIAM J. Applied Dynamical Systems 14, No. 1, pp.335-381 (2015).
[5] B. Fan et al., Earlier vegetation green-up has reduced spring dust storms, Scientific Reports 4, 6749 (2014).
[6] Supplementary Materials for B. Fan et al., Earlier vegetation green-up has reduced spring dust storms, Scientific Reports 4, 6749 (2014).
[7] X. Wang et al., A two-fold increase of carbon cycle sensitivity to tropical temperature variations, Nature 506, 212 (2014).
[8] https://en.wikipedia.org/wiki/Precipitation
[9] S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering, 1st Edition, 2000.
[10] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, 1st Edition, 2003.
[11] G. Sugihara et al., Detecting Causality in Complex Ecosystems, SCIENCE 338, 496 (2012).
[12] Supplementary Materials for G. Sugihara et al., Detecting Causality in Complex Ecosystems, SCIENCE 338, 496 (2012).
[13] https://en.wikipedia.org/wiki/Granger causality
[14] http://www.scholarpedia.org/article/Granger causality
[15] J. M. McCracken and R. S.Weigel, Convergent Cross-mapping and Pairwise Asymmetric Inference, Phys. Rev. E 90, 062903 (2014).
[16] A. Kaiser and T. Schreiber, Information transfer in continuous processes, Phys. D (Amsterdam, Neth.) 166, 43 (2002).
[17] K. Hlavackova-Schindler, M. Palus, M. Vejmelka, and J. Bhattacharya, Causality detection based on information-theoretic approaches in time series analysis, Phys. Rep. 441, 1 (2007).
[18] H. G. Schuster, Deterministic Chaos: An Introduction, 3rd Augmented Edition, 1995.
[19] W. Gekelman, Lecture notes on Waves/Spectra, Noise, Cor-
relations and ...., Lecture 5, March 27, 2004, source:
http://plasma.physics.ucla.edu/laptag-website/Lectures/Lecture5.pdf
[20] https://en.wikipedia.org/wiki/Pearson product-moment correlation coefficient
[21] https://en.wikipedia.org/wiki/Coupled map lattice
[22] K. Kaneko, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice, Prog. Theor. Phys. 72, 480 (1984).
[23] http://www.math.uah.edu/stat/sample/CLT.html
[24] Rice, John, Mathematical Statistics and Data Analysis, 2nd Edition, 1995
[25] Mario Ragwitz and Holger Kantz, Markov models from data by simple non-linear time series predictors in delay embedding spaces, Phys. Rev. E 65, 056201 (2002).
[26] Dmitry A. Smirnov, Quantification of causal couplings via dynamical effects: A unifying perspective, Phys. Rev. E 90, 062921 (2014).
指導教授 黎璧賢(Pik-Yin Lai) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明