博碩士論文 101222602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:54.81.220.239
姓名 許苡茱(icuk setiyawati)  查詢紙本館藏   畢業系所 物理學系
論文名稱 如何從目前已知的經驗能量勢和一個可靠的最佳化演算法來計算並預測碳原子叢集的最穩定構形?
(How well can presently available empirical potentials and an accurate and reliable optimization algorithm be used to calculate the lowest energy structure of a carbon cluster?)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 介面膠體叢聚現象的理論研究★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究
★ 膠體相圖之理論計算★ 膠體、棒狀粒子混合系統之相圖的理論分析
★ 利用時間序列的統計方法研究金屬叢集的動力學★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
★ 金銅合金金屬叢集(N=38)的磁性性質研究★ 膠體、盤狀粒子混合系統的兩階段動態相變區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
我們重溫了能量谷跳躍法,這個一直以來被發展用來尋找分子或金屬叢集的最低能量結構的演算法。基於這個優秀的演算法基礎上, Yen and Lai (Ref. 33) 提出了一個新的構形最佳化方法並用來研究不同構形之間如何轉換。新方法針對了共價鍵的特性在舊方法上做了一些修正: (1) 我們限縮了構形可以被搜尋的空間大小 。(2) 我們把cut-and-splice基因運算子包含進去。改良之後的方法可以更適切的運用在共價鍵系統如碳叢集上因為可以更準確的描述離子和價電子間的偶合交互作用。內文針對此方法會做更詳盡的介紹並應用在四種不同的經驗能量勢上。我們發現碳叢集(Cn, n=3-60) 在構形上會有一連串不同的變化。從小到大分別為: 直線形狀-> 單環 -> 多環 (類平面的碗狀結構) ->籠狀(3D富勒烯)。不同能量勢預測的結果會有些許構形上的差異。 新方法在預測C60 和 C72 上比僅用Deaven and Ho 提出的cut-and-splice [ Phys. Rev. Lett. 75, 288 (1995) ] 更有效率。此外,我們發現TEA勢 [ Phys. Rev. B 71, 035211 (2005) ] 的結果能夠預測2維石墨烯( Cn, n=6,10,13,16,19,22,24,27) 的形成過程。其他經驗勢並沒有發現類似結果。在第一代Brenner 經驗勢部分, 其預測結果和Cai et al.[J. Mol. Struct. (theochem), 678, 113 (2004) ] 非常一致。第二代Brenner勢的結果則有非常規則的結構演化。和同樣使用二代Brenner勢的Kosimov等人 [Phys. Rev. B 78, 235433]比較,我們的結果更為定量。文章最後就一二代的Brenner勢的結果差異分析了其物理上的意涵為何。
摘要(英) Abstract
The basin hopping optimization algorithm previously developed for finding the lowest energy structures of clusters, both nonmetallic and metallic, is revisited. This state-of-the-art technique is extended by our group (Ref. 33) to carbon clusters studying their varied forms of structural transitions, changing from one cluster geometry to another. This modified optimization algorithm very recently proposed by Yen and Lai(Ref. 33) closely parallels that of the basin hopping method [D. J. Wales and J.P. Doye, J. Phys. Chem. A 101,5111 (1997)], but is discreetly designed to take into account the unique bond-order interactions of the carbon cluster through defining a spatial volume within which its lowest energy structure is searched and through introducing a cut-and-splice genetic operator into the basin hopping technique. The present modified basin hopping method is characteristically distinguishable from the nonmetallic and metallic clusters, technically more thorough in dealing the couplings of valence electrons with ions, and hence is more appropriate for carbon clusters. We discuss in this work the basis of success of the present modified basin hopping technique, and tested it by calculating the lowest energy structures of carbon clusters using four different empirical potentials. It is found here that the cluster Cn, n=3-60, undergoes a series of interesting structural transitions, i.e. its structural geometry changes, in sequence of increasing cluster size n, as linear → single ring → multi rings or quasi-two dimensional bowl-like → cage-like or three dimensional fullerene-like structure, depending on the empirical potential employed in optimization. The modified basin hopping algorithm (Ref. 33) is efficient when it is checked against the popular cut-and-splice technique of Deaven and Ho [Phys. Rev. Lett. 75, 288 (1995)] for two well-known stable carbon clusters of larger size, i.e.C60 and C72. An interesting prediction of one of the empirical potentials, due to Erhart and Albe [Phys. Rev. B71, 035211 (2005)], is its capturing of the development of two-dimensional graphene structure, i.e. the evolution of Cn for n=6, 10, 13, 16, 19, 22, 24, 27 since no such structural sequence is seen in the other three empirical potentials. Our optimization algorithm that combines with the first generation of Brenner potential yields Cn compares very well with those reported by Cai et al. [J. Mol. Struct. (Theochem) 678, 113 (2004)]. For the second generation of Brenner potential, our calculated Cns show regularity in its structural evolution. These Cn
ii
results are more quantitatively behaved than the only similar works by Kosimov et al. [Phys. Rev. B 78, 235433 (2008); Phys. Rev. B 81, 195414 (2010)]. Finally, we draw physical implications from our comparison of Cn obtained from using the first and second generations of Brenner potentials. Keywords: carbon cluster; optimization algorithm; topological transition; fullerene.
Corresponding author: sklai@coll.phy.ncu.edu.tw
關鍵字(中) ★ 碳群
★ 理想演算
★ 拓撲學轉換
★ 碳六十
關鍵字(英) ★ carbon cluster
★ optimization algorithm
★ topological transition
★ fullerene
論文目次 Contents
Abstract .................................................................................................................... i
摘要 ......................................................................................................................... iii
Aknowledgments .................................................................................................... iv
Contents ................................................................................................................... v
List of Tables: ......................................................................................................... vi
I. INTRODUCTION ............................................................................................ 1
II. THEORY AND METHODOLOGY ................................................................. 6
A. Empirical potential for covalent cluster ............................................................ 6
1. General form of Tersoff potential for covalent systems ................................... 6
2. Tersoff empirical potential: a form for multicomponent systems .................... 9
3. Tersoff-Erhart-Albe empirical potential .......................................................... 9
4. Brenner potential: first generation ................................................................ 10
5. Brenner potential: second generation ............................................................ 13
B. Optimization methodology: modified basin hopping....................................... 14
III. RESULTS AND DISCUSSION ...................................................................... 17
A. Tersoff and TEA potential: Clusters Cn=3-20 ..................................................... 18
B. Brenner first and Second generations potentials: Clusters Cn=3-60 .................... 22
IV. CONCLUDING REMARKS AND PERSPECTIVES .................................. 30
Appendix A: Modified Basin Hopping Technique ................................................ 32
REFERENCES ...................................................................................................... 40
FIGURE CAPTIONS ............................................................................................43
參考文獻 REFERENCES
1R. P. Gupta, Phys. Rev. B 23, 6265 (1981). 2 M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251 (1993). 3A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, 139 (1990). 4 F. Ercolessi, M. Parrinello, and E. Tosatti, Philos. Mag. A 58, 213 (1988). 5 F. Calvo and F. Spiegelmann, J. Chem. Phys. 112, 2888 (2000). 6B.Assadollahzadehand P.Schwerdtfeger, J. Chem. Phys.131, 064306 (2009). 7 M. Backman, N. Juslin, and K. Nordlund, Eur. Phys. J. B85, 317(2012). 8 G. C. Abell, Phys. Rev. B 31, 6184 (1985). 9J.Ferrante, J. R. Smith, and J. H. Rose, Phys. Rev. Lett. 50, 1385 (1983); J. H. Rose, J. R. Smith, and J.Ferrante, Phys. Rev. B 28, 1835 (1983). 10B.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276 (1962). 11P. W. Anderson,Phys. Rev. Lett.21, 13 (1968). 12J. D. Weeks, P. W. Anderson, and A. G. H. Davidson, J. Chem. Phys. 58, 1388 (1973). 13 J. Tersoff, Phys. Rev. Lett. 56, 632 (1986). 14 J. Tersoff, Phys. Rev. B 37, 6991 (1988). 15 J. Tersoff, Phys. Rev. B 38, 9902 (1988). 16 J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988). 17 J. Tersoff, Phys. Rev. B 39, 5566 (1989). 18D. W. Brenner, Phys. Rev. B 42, 9458 (1990); see also Phys. Rev. B 46, 1948 (1992) for erratum. 19D. W. Brenner,Mater. Res. Soc. Symp. Proc.141,59 (1989); D. H. Robertson, D. W. Brenner, and C. T. White,Phys. Rev. Lett.25,323 (1991); D. W. Brenner, D. H. Robertson, M. L. Elert, and C. T. White,Phys. Rev. Lett. 70,1821 (1992).
41
20D. W. Brenner, O. A. Shenderova1, J. A. Harrison,S. J. Stuart, B. Ni,and S. B.Sinnott, J. Phys.: Condens. Matter 14, 783 (2002). 21P. Erhart and K. Albe, Phys. Rev. B71, 035211 (2005). 22T. L. Yoon, T. L. Lim, T. K. Min, S. H. Hung, N. Jakse, S.K. Lai, J. Chem. Phys. 139, 204702 (2013). 23J. Hur and S. J. Stuart, J. Chem. Phys. 137, 054102 (2012). 24D. J. Wales and J.P. Doye,J. Phys. Chem. A101,5111 (1997). 25S.K. Lai, P.J. Hsu, K. L. Wu, W. K. Liu, and M.Iwamatsu, J. Chem. Phys. 117, 10715 (2002). 26P. J. Hsu and S. K. Lai, J. Chem. Phys. 124, 044711 (2006). 27 D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995). 28Z. Chen, X. Jiang, J. Li, and S. Li, J. Chem. Phys. 138, 214303 (2013). 29S. Hobday and R. Smith, Mol. Simul. 25, 93 (2000); J. Chem. Soc. Faraday Trans. 93, 3919 (1997). The lowest energy values in the second reference have been improved in the first one. 30J. P. K. Doye, Phys. Rev. E 62, 8753 (2000). 31 W. Cai, N Shao, X. Shao, and Z. Pan, J. Mol. Struct. (Theochem) 678, 113 (2004). 32D. P. Kosimov, A. A. Dzhurakhalov, and F. M. Peeters, Phys. Rev. B78, 235433 (2008); Phys. Rev. B81, 195414 (2010). 33 T. W. Yen and S. K. Lai, “Beyond the empirical potential in the study of lowest energy structures of carbon clusters,” to be published (2014). 34See http://lammps.sandia.gov for LAMMPS code. 35Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84, 6611 (1987). 36D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
37H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318,
42
162 (1985). 38Z. Slanina, K. Ishimura, K. Kobayashi, and S. Nagase, Chem. Phys. Lett. 384, 114 (2004). 39W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge,1986). 40C. Zhang, X. Xu, H. Wu, and Q. Zhang, Chem. Phys. Lett. 364, 213 (2002). 41J. Drowart, R. P. Burns, G. De Maria, and M. G. Inghram, J.Chem. Phys. 31, 1131 (1959).
指導教授 賴山強(Prof. S. K Lai) 審核日期 2014-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明