博碩士論文 101223005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.138.175.180
姓名 林妍妤(Yen-Yu Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含鈦半導體陶瓷材料作為載體的燃料電池觸媒研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 直接甲醇燃料電池因為具有工作溫度低、進料容易和高能量密度(6.09 kWh kg-1)等優點而引起了各界的關注,但是其亦有諸如較低的功率密度、白金觸媒易遭一氧化碳毒化(CO tolerance)、甲醇滲透(crossover)與觸媒價格相對高等缺點。本研究以改善直接甲醇燃料電池陽極觸媒之電化學效能、CO耐受性和使用壽命為主要目的。
由文獻得知傳統碳材載體具有易被腐蝕且與金屬之間作用力弱,進而造成觸媒效能和壽命下降的缺陷,因此本實驗使用具有較高電化學穩定性、熱穩定性和耐腐蝕性的金屬陶瓷材料,如二氧化鈦(TiO2)、碳化鈦(TiC)與氮化鈦(TiN)取代部份碳材。我們利用鈦陶瓷載體與碳黑的混合物作為直接甲醇燃料電池的觸媒載體,分別製備出PtRu/TiO2-C(1:1)、PtRu/TiC-C(1:1)和PtRu/TiN-C(1:1)觸媒。
實驗結果顯示PtRu/TiO2-C(1:1)、PtRu/TiC-C(1:1)和PtRu/TiN-C(1:1)觸媒與單純碳黑載體的觸媒(平均顆粒大於4.0 nm)相比,具有較高的PtRu金屬粒子分散性和較小的金屬顆粒(平均顆粒在3.5到4.0 nm之間)。而PtRu/TiO2-C(1:1) (1278.0 A/g Pt)、PtRu/TiC-C(1:1) (1598.5 A/g Pt)和PtRu/TiN-C(1:1) (1709.2 A/g Pt)觸媒在甲醇氧化的催化活性方面亦較商用的PtRu/E-TEK (667.3 A/g Pt)和單純碳黑載體之PtRu/CB (1128.1 A/g Pt)觸媒高出許多。其中催化活性最高的PtRu/TiN-C(1:1)觸媒其活性高出商用的PtRu/E-TEK大約2倍之多。
我們經由XPS測試得知三種鈦陶瓷載體具有較高的束縛能位移證實其和金屬之間具有較強的作用力,亦說明了為何能有較小的金屬顆粒與經過長時間的計時安培法下尚能保有較高穩定度的原因,同時此電子效應亦與甲醇氧化的催化活性有關。另一方面,TiO2表面的氫氧官能基(Ti-OH)加強了釕的雙功能效應,能將吸附在觸媒金屬上的一氧化碳去除,較表面沒有任何官能基的TiC和TiN更能提昇觸媒抗CO毒化的效能。我們的實驗結果證實TiO2、TiC和TiN作為觸媒載體確實具有傑出的效果,不但能有效防止觸媒金屬的聚集,亦能增加甲醇氧化的催化活性和穩定性。其中催化活性最好的是PtRu/TiN-C(1:1)觸媒。
在80°C的DMFC測試中,PtRu/TiO2-C(1:1)、PtRu/TiC-C(1:1)和PtRu/TiN-C(1:1)觸媒顯示出優秀的效能,功率密度可以達到98.1 mW/cm2、73.5 mW/cm2和80.0 mW/cm2,相較於PtRu /E-TEK的58.9 mW/cm2高出許多。其中PtRu/TiO2-C(1:1)因為擁有良好的甲醇親和力而具有較佳的CO耐受性,而使PtRu/TiO2-C(1:1)在MEA的測試中具有比PtRu/TiN-C(1:1)好的輸出功率。
摘要(英) Direct methanol fuel cells (DMFCs) have attracted considerable interest because of a variety of merits such as low operating temperatures, easy fuel-feeding, and the high energy density of methanol (6.09 kWh kg-1). However, it also has some disadvantages, for example, low power density, Pt poison by CO, methanol crossover, and high cost for catalysts. In this study, we focuse on the improvement in electrochemical performance, CO tolerance, and life time of catalysts.
Due to the research by the literature, the traditional carbon support is susceptible to corrosion under the harsh conditions, and has weakly interaction with catalytic metal, which will result in the degradation of catalyst performance and life time. So we try to use metal ceramic materials like titanium dioxide (TiO2), titanium carbide (TiC), and titanium nitride (TiN), which are plausible support materials due to their electrochemical and thermal oxidation stability and corrosion resistive nature under electrochemical oxidation condition. In this study, we present the studies using titania and carbon hybrids as supports to prepare PtRu/TiO2-C(1:1), PtRu/TiC-C(1:1), and PtRu/TiN-C(1:1) catalysts system.
PtRu catalysts prepared using PtRu/TiO2-C(1:1), PtRu/TiC-C(1:1), and PtRu/TiN-C(1:1) supports shows the nanoparticles are highly dispersive and exhibit smaller particle sizes (3.4 to 4.0 nm) on the TiO2, TiC, and TiN supports compared to that on Vulcan XC-72 carbon support (>4.0 nm). The Methanol oxidation reaction shows increasing activity from PtRu/E-TEK (667.3 A/g Pt), PtRu/CB (1128.1 A/g Pt), PtRu/TiO2-C(1:1) (1278.0 A/g Pt), PtRu/TiC-C(1:1) (1598.5 A/g Pt), and PtRu/TiN-C(1:1) (1709.2 A/g Pt). The maximum MOR activity in PtRu/TiN-C(1:1) is found to be nearly twice that of conventional PtRu/E-TEK catalysts.
Strong metal interaction with Titanium is identified by XPS studies which yielding higher binding energy shift of the three Titania supports, explains the production of smaller particle size and the stability of the nano-participles after I-T curve these systems. This electronic effect also partly accounts for the improved MOR activity. On the effects of CO tolerance, the OH groups on TiO2 surface combines with Ru to remove the CO intermediate, and shows improved CO tolerance over that of TiC and TiN supports where the surface is free of any functional groups. This study demonstrated TiO2, TiC, and TiN are outstanding supports which inhibits the aggregation of PtRu, results in significantly increases MOR catalytic activity and stability. The best MOR activity observed at the PtRu/TiN-C(1:1) catalyst.
The DMFC comprising the PtRu/TiO2-C(1:1), PtRu/TiC-C(1:1), and PtRu/TiN-C(1:1) anode shows an impressive power density of 98.1 mW/cm2, 73.5 mW/cm2, and 80.0 mW/cm2 compared to a peak power density of 58.9 mW/cm2 found in the MEA (Membrane electrode assembly) with a PtRu /E-TEK anode at 80°C. The better CO-tolerance in the anode catalyst of PtRu/TiO2-C(1:1) originated from its better methanol affinity, for example is likely to be responsible for the better fuel cell out-put compared to the anode made from PtRu/TiN-C(1:1).
關鍵字(中) ★ 陽極觸媒
★ 甲醇氧化
★ 鉑釕合金
★ 金屬陶瓷材料
關鍵字(英) ★ Anode catalysts
★ Methanol Oxidation
★ PtRu Aolly
★ Metal Ceramic Materials
論文目次 中文摘要………………………………i
Abstract………………………………iii
誌謝辭………………………………v
目錄………………………………vi
圖目錄………………………………ix
表目錄………………………………xii
第一章 緒論………………………………1
1-1 前言………………………………1
1-2 燃料電池的簡介與優勢………………………………1
1-3 燃料電池種類………………………………3
1-4 直接甲醇燃料電池之工作原理………………………………4
1-5 燃料電池組件說明………………………………6
1-6 研究動機與目的………………………………7
第二章 基本原理與文獻回顧………………………………9
2-1 直接甲醇燃料電池陽極反應………………………………9
2-2 直接甲醇燃料電池陽極觸媒………………………………11
2-3 直接甲醇燃料電池質子交換膜………………………………15
2-4 直接甲醇燃料電池陰極反應………………………………15
2-5 直接甲醇燃料電池陰極觸媒………………………………18
2-6 觸媒載體材料………………………………21
2-6-1 碳材載體………………………………22
2-6-2 非碳材陶瓷材料載體………………………………25
第三章 實驗方法………………………………36
3-1 觸媒合成………………………………36
3-1-1 醇類還原法(EG)………………………………36
3-1-2 觸媒熱處理………………………………37
3-2 材料特性鑑定與分析………………………………38
3-2-1 X-光粉末繞射儀(PXRD)………………………………38
3-2-2 高解析掃描穿透式電子顯微鏡(HRTEM)………………………………38
3-2-3 場發射掃描式電子顯微(FE-SEM)………………………………39
3-2-4 X-光射線光電子能譜儀(XPS)………………………………40
3-2-5 感應耦合電漿質譜分析儀(ICP-MS)………………………………40
3-2-6 四點探針電阻測試儀(Four Point Probe Mesurement)………………………………40
3-3 觸媒電性測試………………………………41
3-3-1 觸媒漿料配製與電極製備………………………………42
3-3-2 氫的吸脫附(H-stripping)………………………………42
3-3-3 甲醇氧化活性測試(Methanol Oxidation Reaction, MOR)………………………………43
3-5-4 計時安培分析法(Chronoamperometry)………………………………43
3-4 薄膜電極組製作………………………………44
3-4-1 質子交換膜處理………………………………44
3-4-2 氣體擴散層電極製作………………………………44
3-4-3 熱壓條件………………………………44
3-4-4 薄膜電極組測試………………………………45
3-5 實驗藥品………………………………46
3-6 實驗儀器………………………………47
第四章 結果與討論………………………………49
4-1 載體材料性質探討………………………………49
4-2 陶瓷載體與碳黑複合載體應用在甲醇氧化觸媒之分析與探討………………………………52
4-2-1 觸媒之氫吸脫附………………………………53
4-2-2 觸媒之甲醇氧化電催化活性………………………………56
4-2-3 觸媒之結構鑑定………………………………59
4-3 鉑釕雙合金承載在複合載體系統應用在甲醇氧化觸媒………………………………64
4-3-1 觸媒之結構鑑定………………………………65
4-3-2 觸媒之元素分析………………………………70
4-3-3 觸媒之氫吸脫附………………………………71
4-3-4 觸媒之甲醇氧化電催化活性………………………………73
4-3-5 觸媒之穩定性測試………………………………75
4-3-6 直接甲醇燃料電池(MEA)測試………………………………78
第五章 結論與未來展望………………………………80
第六章 參考文獻………………………………82
參考文獻 [1]W. R. Grove, Philosophical Magazine Series, 1893, 14, 127-130
[2]M. L. Mond, and C. Langer, Proceedings of the Royal Society London, 1989, 46, 296-304
[3]B. C. H. Steele, and A. Heinzel, Nature, 2001, 414, 345-352
[4]L. Carrette, K. A. Friedrich, and U. Stimming, Fuell Cells, 2001, 1, 5-39
[5]K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles, Chemical Engineering Science, 2001, 56, 333-341
[6]C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, Journal of Power Sources, 2002, 105, 283-296
[7]http://www.scientific-computing.com/features/feature.php?feature_id=126
[8]T. Frelink, W. Visscher, and J. A.R. Van Veen, Surface Science, 1995, 335, 35-36
[9]H. A. Gasteiger, N. Markov, P. N. Ross, Jr., and E. J. Cairns, Journal of Physical Chemistry, 1993, 97, 12020-12029
[10]B. R. Rauhe Jr., F. R. McLarnon, and E. J. Cairns, Journal of The Electrochemical Society, 1995, 142, 1073-1084
[11]S. R. Brankovic, N. S. Marinkovic, J. X. Wanga, R. R. Adzic´, Journal of Electroanalytical Chemistry, 2002, 532, 57-66
[12]A. Hamnett, Catalysis Today, 1997, 38, 445-457
[13]R. Greef, R. M. Peat, L. M. Peter, D. Pletcher, J. Robinson In Instrumental methods in Electrochemistry, John Wiley & Sons, Inc.:New York, 1985
[14]N. M. Markovic, and P. N. Ross Jr., Surface Science Reports, 2002, 45, 117-229
[15]T. Iwasita, Electrochimica Acta, 2002, 47, 3663-3674
[16]K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, and Y.-E. Sung, Journal of Physical Chemistry B, 2002, 106, 1869-1877
[17]Johnson Matthey, Platinum Today, http://www.platinum.matthey.com/prices/price-charts
[18]E. Antolini, F. Cardellini, Journal of Alloys and Compounds, 2001, 315, 118-122
[19]J. R. C. Salgado, E. Antolini, E. R. Gonzalez, Applied Catalysis B, 2005, 57, 283-290
[20]H. A. Gasteiger, N. Markovic, P. N. Ross Jr., E. J. Cairns, Journal of Physical Chemistry, 1994, 98, 617-625
[21]C. Lu, C. Rice, R. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield, and A. Wieckowski, Journal of Physical Chemistry B, 2002, 106(37), 9581-9589
[22]J. O′m. Bockris, and H. Wroblowa, Journal of Electroanalytical Chemistry, 1964, 7, 428-451
[23]M. Watanabe, M. Uchida, and S. Motoo, Journal of Electroanalytical Chemistry, 1987, 229, 395-406
[24]D. Chu, and S. Gilman, Journal of The Electrochemical Society, 1996, 143, 1685-1690
[25]Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Diamond & Related Materials, 2004, 13, 1764-1770
[26]J. Guo, G. Sun, S. Sun, S. Yan, W. Yang, J. Qi, Y. Yan, Q. Xin, Journal of Power Sources, 2007, 168, 299-306
[27]O. Sahin, and H. Kivrak, International Journal of Hydrogen Energy, 2013, 38, 901-909
[28]F. Colmati, E. Antolini, and E. R. Gonzalez, Electrochimica Acta, 2005, 50, 5496-5503
[29]Z. Liu, B. Guo, L. Hong, T. H. Lim, Electrochemistry Communications, 2006, 8, 83-90
[30]A. O. Neto, L. A. Farias, R. R. Dias, M. Brandalise, M. Linardi, E. V. Spinacé, Electrochemistry Communications, 2008, 10, 1315-1317
[31]Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, and G. Sun, Journal of Physical Chemistry C, 2010, 114, 19714-19722
[32]X.-J. Liu, C.-H. Cui, M. Gong, H.-H. Li, Y. Xue, F.-J. Fan, and S.-H. Yu, Chemical Communications, 2013, 49, 8704-8706
[33]I. T. Kim, H. K. Lee, and J. Shim, Journal of Nanoscience and Nanotechnology, 2008, 8, 5302-5305.
[34]S. S. Mahapatra, and J. Datta, International Journal of Electrochemistry, 2011, 2011, 1-16
[35]Y. Kang, and C. B. Murray, Journal of the American Chemical Society, 2010, 132, 7568-7569
[36]L. Liu , E. Pippel , R. Scholz, and U. Gösele, Nano Letters, 2009, 9, 4352-4358
[37]E. I. Papaioannou, A. Siokou, Ch. Comninellis, and A. Katsaounis, Electrocatalysis, 2013, 4, 375-381
[38]http://en.wikipedia.org/wiki/Nafion
[39]C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, J. Wiley & Sons, New York, 1998
[40]H. S. Wroblowa, Y.-C. Pan, and G. Razumney, Journal of Electroanalytical Chemistry, 1976, 69, 195-201
[41]R. R. Adžić, and J. X. Wang, Journal of Physical Chemistry B, 1998, 102, 8988-8993
[42]E. Yeager, Journal of Molecular Catalysis, 1986, 38, 5-25
[43]李美嬅, 杜景順, 化工, 2009, 56, 34-46
[44]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y.i Zhu, and Y. Xia, Science, 2009, 324, 1302-1305
[45]F.-J. Lai, H.-L. Chou, L. S. Sarma, D.-Y Wang, Y.-C. Lin, J.-F. Lee, Hwang, and C.-C. Chen, Nanoscale, 2010, 2, 573-581
[46]W. Li, Q. and Xin, and Y. Yan, International Journal of Hydrogen Energy, 2010, 35(6, )2530–2538
[47]F.-J. Lai, L. S. Sarma, H.-L. Chou, D.-G. Lin, C.-A. Hsieh, J.-F. Lee, and B.-J. Hwang, Journal of Physical Chemistry C, 2009, 113, 12674-12681
[48]E. B. Fox, and H. R. Colon-Mercado, International Journal of Hydrogen Energy, 2010, 35, 3280–3286
[49]V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wamg, P. N. Ross, C. A. Lucas, N. M. Markovi, Science, 2007, 315, 493-497
[50]R. Yang, J. Leisch, P. Strasser, and M. F. Toney, Chemistry of Matrials, 2010, 22, 4712-4720
[51]F. Taufany, C.-J. Pan, H.-L. Chou, J. Rick, Y.-S. Chen, D.-G. Liu, J.-F. Lee, M.-T. Tang, and B.-J. H Hwang, Chemisrty - A European Journal, 2011, 17, 10724-10735
[52]D. A. Landsman and F. J. Luczak, U.S. Patent, 1982, 4, 944
[53]K. V. Ramesh, P. R. Sarode, S. Vasudevan, A. K. Shukla, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 223, 91-106
[54]B. C. Beard and P. N. Ross Jr., Journal of The Electrochemical Society, 1990, 137 3368-3374.
[55]A. J. Appleby, Catalysis Reviews: Science and Engineering, 1971, 4, 221-244
[56]V. Jalan, E. J. Taylor, Journal of The Electrochemical Society, 1983, 130, 2299-2302
[57]S. Mukerjee, S. Srinivasan, M. P. Soriaga, J.McBreen, Journal of The Electrochemical Society, 1995, 142, 1409-1422
[58]V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, and N. M. Markovic, Nature Materials, 2006, 6, 241-247
[59]Y. Shao, J. Liu, Y. Wang, and Y. Lin, Journal of Materials Chemistry, 2009, 19, 46-59
[60]Y. Shao, G. Yin, and Y. Gao, Journal of Power Sources, 2007, 171, 558-566
[61]E. Antolini, Applied Catalysis B: Environmental, 2009, 88, 1-24
[62]D. He, C. Zeng, C. Xu, N. Cheng, H. Li, S. Mu, and M. Pan, Langmuir, 2011, 27, 5582-5588
[63]S. Shanmugam, and A. Gedanken, Small, 2007, 3, 1189-1193
[64]A. S. Aricòa, S. Srinivasan, and V. Antonucci, Fuel Cells, 2001, 1, 133-161
[65]M. Carmo, V.A. Paganin, J.M. Rosolen, and E.R. Gonzalez, Journal of Power Sources, 2005, 142, 169-176
[66]S. Iijima, Nature, 1991, 354, 56-58
[67]https://hcc.hanwha.co.kr/eng/business/namo_cnt.jsp
[68]W. Li, X.Wang, Z. Chen, M. Waje, and Y. Yan, Journal of Physical Chemistry B, 2006, 110, 15353-15358
[69]C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. Baker, Journal of Physical Chemistry B, 2001, 105, 1115-1118
[70]K.-Y. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, Journal of Materials Chemistry, 2004, 14, 505-516
[71]J.-S. Yu, S. Kang, S. B. Yoon, and G.Chai, Journal of the American Chemical Society, 2002, 124, 9382-9383
[72]G. S. Chai, S. B. Yoon, J.-S. Yu, J.-H. Choi, and Y.-E. Sung, The Journal of Physical Chemistry B, 2004, 108, 7074-7079
[73]C. Liu, M. Chen, C. Du., J. Zhang, G. Yin, P. Shi, and Y. Sun, International Journal of Electrochemical Science, 2012, 7, 10592-10606
[74]Z. Chen, X. Qiu, B. Lu, S. Zhang, W. Zhu, L. Chen, Electrochemistry Communications, 2005, 7, 593-596
[75] H. M. Villullas, F. I. Mattos-Costa, and L. O. S. Bulhoes, Journal of Physical Chemistry B, 2004, 108, 12898-12903
[76]http://www.hindawi.com/journals/ijp/2009/294042/fig1/
[77]O. Tonomura, T. Sekiguchi, N. Inada, T. Hamada, H. Miki, and K. Torii, Journal of The Electrochemical Society, 2012, 159, G1-G5
[78]P. Kolla, and A. Smirnova, Journal of Hydrogen Energy, 2013, 38, 15152-15159
[79]X.-L. Sui, Z.-B. Wang, M. Yang, L Huo, D.-M. Gu, and G.-P. Yin, Journal of Power Source, 2014, 255, 43-51
[80]I.-S. Park, E. Lee, and A. Manthiram, Journal of The Electrochemical Society, 2010, 157, B251-B255
[81]J. C. C. Fan, and J. B. Goodenough, Journal of Applied Physics, 1977, 48, 3524-3531
[82]M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, Thin Solid Films, 2004, 115, 447-448
[83]V. T. T. Ho, K. C. Pillai, H.-L. Chou, C.-J. Pan, J Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu, and W.-T. Chuang, Energy Environmental Science, 2011, 4, 4194-4200
[84]A. Arya and E. A. Carter, Journal of Chemical Physics, 2003, 118, 8982-8996
[85]A. Lupu, D. Compagnone, S. Orlanducci, M. Letizia T., V. Magearu, and G. Palleschi, Electroanalysis, 2004, 16, 1704-1710
[86]Z.-Z. Jiang, Z.-B. Wang, W.-L. Qu, D.-M. Gu, and G.-P. Yin, Applied Catalysis B: Environmental, 2012, 123-124, 214-220
[87]R. B. Levy, M. Boudart, Science, 1973, 181, 547-549
[88]M. K. Jeon, K. R. Lee, W. S. Lee, H. Daimon, A.Nakahara, and S. I. Woo, Journal of Power Sources, 2008, 185, 927-931
[89]K. G. Nishanth, P. Sridhar, S. Pitchumani, and A. K. Shukla, ECS Transactions, 2010, 33, 2027-2034
[90]S. Yamanaka, Journal of Materials Chemistry, 2010, 20, 2922–2933
[91]J. P. Bars, E. Etchessahar, J. Debuigne, Journal of the Less Common Metals, 1977, 52, 51-76
[92]R. Asahi, T. Morikaua, K. Aoki, and Y. Taga, Science, 2011, 293, 269-271
[93]B. Avasarala, and P. Haldar, Energy, 2013, xxx, 1-9
[94]Z. Liu, X. Y. Ling, X. Su, and J. Y. Lee, Journal of Physical Chemistry B, 2004, 108, 8234-8240
[95]Y. Lin, and X. Cui, Journal of Physical Chemistry B, 2005, 109, 14410-14415
[96]J. H. Kim, S. M. Choi, S. H. Nam, M. H. Seo, S. H. Choi, and W. B. Kim, Applied Catalysis B: Environmental, 2008, 82, 89-102
[97]C. Roth, M. Goetz, and H. Fuess, Journal of Applied Electrochemistry, 2001, 31, 793-798
[98]L. J. Zhang, Z.Y. Wang, and D.G. Xia, Journal of Alloys and Compounds, 2006, 426, 268-271
[99]A. S. Arico`, P. L. Antonucci, E. Modica, V. Baglio, H. Kim, and V. Antonucci, Electrochimica Acta, 2002, 47, 3723-3732
指導教授 諸柏仁(Peter Po-Jen Chu) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明