博碩士論文 101223007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.119.138.196
姓名 李威龍(Wei-Long Li)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含二唑鈷錯合物氧化還原對的合成及其於染料敏化太陽能電池的應用
(ynthesis of Diazole-containing Cobalt-based Redox Couples and Their Application in Dye-sensitized Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池(Dye-sensitized solar cells,簡稱DSSCs)因成本低、製作簡易、質輕、多色彩、可製作成可撓曲式…等優點,在新興太陽能電池中具有發展潛力。在染料敏化太陽能電池的組成中,電解質扮演還原染料、傳遞電洞及決定元件之理論開路電壓(Voc)的重要角色。目前最常使用的碘系統電解質因無法藉由結構修飾而調變其氧化還原電位來提高元件之開路電壓,亦無法精準搭配不同HOMO能階的光敏劑。另一方面,鈷錯合物因金屬中心有多重且穩定的氧化態,並且可藉由配位基結構的改變來調控其氧化還原電位,因此具有很大的可行性,成為DSSCs用電解質的研究重點之一。本論文合成出三組鈷錯合物電解質CRC-1、CRC-2、CRC-3。鈷錯合物在450 nm至700 nm間無吸收,不與光敏劑(如:CYC-B11H、SJW-B17、SJW-B18)競爭吸光。CRC-1的氧化還原電位為0.40 V vs. NHE、CRC-2為0.74 V vs. NHE、 CRC-3為0.71 V vs. NHE,皆高於上述光敏劑的HOMO,CRC-2、CRC-3的氧化還原電位較碘系統電解質低,故使用CRC-2及CRC-3電解質之元件有較大的理論開路電壓。以CRC-1電解質搭配染料SJW-B18之元件的開路電壓為0.716 V,由於鈷錯合物電解質易與二氧化鈦上電子進行再結合,所以鈷系統元件之開路電壓略低於碘系統元件的0.749 V。CRC-2電解質可有效提升理論開路電壓,搭配尾端有較大基團的染料SJW-B17可增加TiO2表面覆蓋度,又由於SJW-B17在TiO2薄膜的吸附量較多,以SJW-B17所敏化之元件有高的光電表現:短路電流密度為10.63 mA/cm2、開路電壓為0.916 V、填充因子為0.660 ,光電轉換效率為6.42%。CRC-3電解質有最適當的氧化還原電位0.71 V,與CRC-2電解質比較,對再生染料CYC-B11H、SJW-B17、SJW-B18有較大的驅動力,其中搭配染料SJW-B17所組裝之元件,短路電流密度為13.36 mA/cm2、開路電壓為0.868 V、填充因子為0.619、光電轉換效率為7.19 %。
摘要(英) Dye-sensitized solar cells (DSSCs), is one of the hottest research topics in the new photovoltaic technology, due to its low production cost, simple fabrication process, semi-transparent, light weight, colorful, and can be flexible. In a DSSC device, electrolyte is one of the important components, which reduced the dye, carried the hole to the cathode and determined the theoratical open-circuit voltage (Voc). Iodide/triiodide system is the most commonly used electrolyte, however it’s redox potential can not be tuned to be compatible to sensitizers with various highest occupied molecular orbitals (HOMOs) or increase the Voc of devices by structure modification. On the other hand, cobalt complexes have multiple, reversible oxidation states metal center and their redox potentials can be tuned by the ligands. Therefore ccbalt electrolyte is also one of the important research topics in DSSC. In this study, we synthesis three cobalt-based redox couple coded CRC-1, CRC-2 and CRC-3. CRC-1, CRC-2 and CRC-3 don’t absorb any light from 450 nm to 700 nm, no competing absorption with ruthenium sensitizers (eg: CYC-B11H, SJW-B17 and SJW-B18 developed in our lab). The redox potentials of CRC-1, CRC-2 and CRC-3 are 0.40, 0.74, 0.71 V vs. NHE respectly, all higher than HOMOs of Ru-based sensitizers studied in this thesis. The redox potentials of CRC-2 and CRC-3 are lower than that of iodine-based electrolyte. Devices based on CRC-2 or CRC-3 electrolyte will have higher theoretical Voc. Device using CRC-1 electrolyte and SJW-B18 sensitizer achieves Voc of 0.716 V which is lower than that for the device baesd on iodide/iodine electrolyte, due to the electron in TiO2 recombined with cobalt-based electrolye rapidly. On the other hand, device using CRC-2 electrolyte and SJW-B17 sensitizer has good photovoltaic performance: Jsc: 10.63 mA/cm2, Voc: 0.916 V, FF: 0.660, PCE: 6.42%. CRC-3 electrolyte has a appropriate redox potential for CYC-B11H, SJW-B17 and SJW-B18 dyes due to it has a proper driving force to regenerate the dyes as well as provides high theoretical Voc. Device based SJW-B17 and CRC-3 electrolyte has the best photovoltaic performance amongst the devices studied in this thesis, Jsc: 13.36 mA/cm2, Voc: 0.868 V, FF : 0.619 and PCE : 7.19%.
關鍵字(中) ★ 染料敏化太陽能電池
★ 電解質
★ 鈷錯合物
★ 釕金屬錯合物染料
關鍵字(英) ★ DSSCs
★ electrolyte
★ Cobalt complex
★ Ruthenium-based dyes
論文目次 中文摘要 i

Abstract iii

謝誌 v

圖目錄 xii

表目錄 xvi

第一章、緒論 1
1-1、前言 1
1-2、染料敏化太陽能電池(DSSCs)的組成與工作原理 2
1-2-1、染料敏化太陽能電池的工作機制 3
1-3、染料敏化太陽能電池中所使用的電解質 4
1-3-1、應用於染料敏化太陽能電池的電解質之性質需求 5
1-3-2、染料敏化太陽能電池中電解質材料的介紹 6
1-4、鈷錯合物電解質的文獻回顧 13
1-4-1、鈷錯合物結構與染料結構對電池效率的影響 13
1-4-2、鈷錯合物結構與其氧化還原電位的影響 19
1-5、研究動機 23
第二章、實驗方法 25
2-1、實驗藥品及產物結構、名稱、分子量對照表 25
2-1-1、實驗藥品 25
2-1-2、結構、名稱、分子量對照表 27
2-2、測量儀器及樣品製備 32
2-2-1、紫外光/可見光/近紅外光吸收光譜儀 (UV/Vis/NIR spectroscope) 32
2-2-2、核磁共振光譜儀 (Nuclear Magnetic Resonance spectroscope) 33
2-2-3、電化學測量 (Electrochemical Measurement) 34
2-2-4、太陽光模擬器與光電轉換效率測試 (Solar Simulator and J-V measurement system) 35
2-2-5、太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficieny, IPCE) 35
2-2-6、交流阻抗分析儀 ( AC-Impedance analysis,) 36
2-3、鈷錯合物的合成 39
2-3-1、Ligand-1的合成 39
2-3-1-1、[2,2′-bipyridine] 1-oxide (bpy N-oxide)的合成步驟[30] 40
2-3-1-2、6-isocyano-2,2′-bipyridine (6-CNbpy)的合成步驟[31] 41
2-3-1-3、6-(1H-imidazol-2-yl)-2,2′-bipyridine (6-Imbpy)的合成步驟 42
2-3-1-4、6-(1-methyl-1H-imidazol-2-yl)-2,2′-bipyridine (Ligand-1)的合成步驟 43
2-3-2、Ligand-2的合成 44
2-3-2-1、2-bromopyridine 1-oxide (2-Brpy N-oxide)的合成步驟 44
2-3-2-2、6-bromopicolinonitrile (2-CN-6-Brpy)的合成步驟 45
2-3-2-3、6-(1H-pyrazol-1-yl)picolinonitrile (2-CN-6-pzpy)的合成步驟 46
2-3-2-4、2-(1H-imidazol-2-yl)-6-(1H-pyrazol-1-yl)pyridine (2-im-6-pzpy)的合成步驟 47
2-3-2-5、2-(1-methyl-1H-imidazol-2-yl)-6-(1H-pyrazol-1-yl)pyridine (Ligand-2)的合成步驟 48
2-3-3、Ligand-3的合成 49
2-3-3-1、2-bromo-4-methylpyridine 1-oxide (2-Br-4-Mepy N-oxide)的合成步驟 49
2-3-3-2、6-bromo-4-methylpicolinonitrile (2-CN-4-Me-6-Brpy)的合成步驟 50
2-3-3-3、4-methyl-6-(1H-pyrazol-1-yl)picolinonitrile (2-CN-4-Me-6- pzpy)的合成步驟 50
2-3-3-4、2-(1H-imidazol-2-yl)-4-methyl-6-(1H-pyrazol-1-yl)pyridine (2-im-4-Me-6-pzpy)的合成步驟 52
2-3-3-5、 4-methyl-2-(1-methyl-1H-imidazol-2-yl)-6-(1H-pyrazol- 53
2-3-4、鈷錯合物的合成 54
2-3-4-1、二價鈷錯合物[Co(Ligand-1)2](PF6)2(CRC-1-II)的合成步驟 54
2-3-4-2、三價鈷錯合物[Co(Ligand-1)2](PF6)3(CRC-1-III)的合成步驟 55
2-3-4-3、二價鈷錯合物[Co(Ligand-2)2](PF6)2(CRC-2-II)的合成步驟 56
2-3-4-4、三價鈷錯合物[Co(Ligand-2)2](PF6)3(CRC-2-III)的合成步驟 58
2-3-4-5、二價鈷錯合物[Co(Ligand-3)2](PF6)2(CRC-3-II)的合成步驟 59
2-3-4-6、三價鈷錯合物[Co(Ligand-3)2](PF6)3(CRC-3-III)的合成步驟 60
2-4、光敏劑的合成 62
2-4-1、CYC-B11H的合成 62
2-4-2、SJW-B18的合成 63
2-4-3、SJW-B17的合成 64
2-4-3-1、Ligand-B17的合成 64
2-4-3-1-1、5-(3-bromopropyl)-2,2′-bithiophene(3BrPBT)的合成 65
2-4-3-1-2、3,6-di-tert-butyl-9-(3-(5-(thiophen-2-yl)thiophen-2 -yl)propyl)-9H-carbazole (BTPDTBC)的合成 66
2-4-3-1-3、3,6-di-tert-butyl-9-(3-(5-(5-(trimethylstannyl)thiophen -2-yl)thiophen-2-yl)propyl)-9H-carbazole(TMeSn-BTPDTBC)的合成 67
2-4-3-1-4、4,4′-bis(5′-(3-(3,6-di-tert-butyl-9H-carbazol-9-yl)propyl)- [2,2′-bithiophen]-5-yl)-2,2′-bipyridine(Ligand-B17)的合成 68
2-4-3-2、SJW-B17的合成 69
2-5、染料敏化太陽能電池元件製備與組裝 72
2-5-1、二氧化鈦漿料的製備 72
2-5-2、二氧化鈦陽極的製備 72
2-5-3、Pt對電極的製備 73
2-5-4、染料敏化太陽能電池元件的組裝 73
2-5-5、染料敏化太陽能電池元件內各組成條件 73
第三章、結果與討論 76
3-1、鈷金屬錯合物CRC-1、CRC-2及CRC-3的合成與鑑定 76
3-1-1、含有diazole取代之鈷金屬錯合物的合成方法探討 76
3-1-2、鈷金屬錯合物的NMR鑑定 78
3-2、鈷金屬錯合物CRC-1、CRC-2及CRC-3的光電特性探討 80
3-2-1、CRC-1、CRC-2及CRC-3氧化還原對的吸光特性 80
3-2-2、CRC-1、CRC-2及CRC-3氧化還原對的電化學特性 83
3-3、鈷金屬錯合物CRC-2-II之單晶結構 87
3-3-1、鈷金屬錯合物CRC-2-II的養晶方法 87
3-3-2、鈷金屬錯合物CRC-2-II的結構數據 87
3-4、使用鈷金屬錯合物為電解質之DSSC元件的光電性質探討 90
3-4-1、以CRC-1鈷金屬錯合物為電解質之元件的光電性質 90
3-4-2、以CRC-2鈷金屬錯合物為電解質之元件的光電性質 94
3-4-3、以CRC-3鈷金屬錯合物為電解質之元件的光電性質 99

第四章、結論 107

第五章、參考文獻 108

附錄一、化合物之1H NMR與13C NMR光譜 113

附錄二、元件測試結果 125
參考文獻 [1] O’Regan, B.; Grätzel, M. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 1991, 353, 737-739.
[2] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. “Dye-sensitized solar cells”, Chem. Rev. 2010, 110, 6595-6663.
[3] Tian, H.; Sun, L. “Iodine-free redox couples for dye-sensitized solar cells”, J. Mater. Chem. 2011, 21, 10592–10601.
[4] Yanagida, S.; Yu, Y.; Manseki, K. “Iodine/iodide-free dye-sensitized solar cells”, Acc. Chem. Res. 2009, 42, 1827–1838.
[5] Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature 1998, 395, 583–585.
[6] Yang, L.; Cappel, U. B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldta, A.; Johansson, E. M. J. “Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells”, Phys. Chem. Chem. Phys. 2012, 14, 779-789.
[7] Park, G. W.; Hwang, C. G.; Jung, J. W.; Jung, Y. M. “Improvement in long-term stability and photovoltaic performance of UV cured resin polymer gel electrolyte for dye-sensitized solar cell”, Bull. Korean Chem. Soc. 2012, 33, 4093-4097.
[8] Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M. “Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells”, J. Am. Chem. Soc. 2003, 125, 1166-1167.
[9] Huang, K. C.; Vittal, R.; Ho, K. C. “Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells”, Solar Energy Materials & Solar Cells, 2010, 94, 675–679.
[10] Zhao, J.; Shen, X.; Yan, F.; Qiu, L.; Lee S.; Sun, B. “Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells” J. Mater. Chem. 2011, 21, 7326–7330.
[11] Gajardo, F.; Loeb, B. “Spectroscopic and electrochemical properties of a series of substituted polypyridine Co(II)/Co(III) coupkes and their potentiality as mediators for solar cells”, J. Chil. Chem. Soc. 2011, 56, 697-701.
[12] Yu, Q. J.; Wang, Y. H.; Yi, Z. H.; Zu, N. N.; Zhang, J.; Zhang, M.; and Wang, P. “High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states”, ACS Nano. 2010, 4, 6032–6038.
[13] Teng, C.; Yang, X.; Yuan, C.; Li, C.; Chen, R.; Tian, H.; Li, S.; Hagfeldt A.; Sun, L. “Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br-/Br3- electrolytes”, Org. Lett., 2009, 11, 5542–5545.
[14] Zhang, Z.; Chen, P.; Murakami, T. N.; Zakeeruddin, S. M.; Grätzel, M. “ The 2,2,6,6-Tetramethyl-1-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells“, Adv. Funct. Mater. 2008, 18, 341-346.
[15] Bai, Y.; Yu, Q.; Cai, N.; Wang, Y.; Zhanga, M.; Wang, P. “High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle”, Chem. Commun. 2011,47, 4376-4378.
[16] Li, T. C.; Spokoyny, A. M.; She, C.; Farha, O. K.; Mirkin, C. A.; Marks, T. J.; Hupp, J. T. “Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells”, J. Am. Chem. Soc. 2010, 132, 4580–4582.
[17] Daeneke, T.; Kwon, T.; Holmes, A. B.; Duffy, Noel. W.; Bach, U.; Spiccia, L. “High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes”, Nat. Chem. 2011, 3, 211–215.
[18] Nusbaumer, H.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M. “An alternative efficient redox couple for the dye-sensitized solar cell system”, Chem. Eur. J. 2003, 9, 3756-3763.
[19] Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Astani, N. A.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, Md. K.; Grätzel, M. “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nat. Chem. 2014, 6, 242–247.
[20] Nusbaumer, H.; Moser, J. E.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. ”CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells” J. Phys. Chem. B 2001, 105, 10461-10464.
[21] Feldt, S. M.; Gibson, E. A.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeld, A. “Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells”, J. Am. Chem. Soc. 2010. 132, 16714–16724.
[22] Liu, Y.; Jennings, J. R.; Huang, Y.; Wang, Q.; Zakeeruddin, S. M.; Grätzel, M. “Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study”, J. Phys. Chem. C 2011, 115, 18847–18855.
[23] Polander, L. E.; Yella, A.; Curchod, B. F.; Ashari, A. N.; Teuscher, J.; Scopelliti, R.; Gao, P.; Mathew, S.; Moser, J. E.; Tavernelli, I.; Rothlisberger, U.; Grätzel M.; Nazeeruddin, M. K.; Frey, J.; “Towards compatibility between ruthenium sensitizers and cobalt electrolytes in dye-sensitized solar cells”, Angew. Chem. Int. Ed. 2013, 52, 8731 –8735.
[24] Kumar, S. A.; Urbani, M.; Medel, M.; Ince, M.; González-Rodríguez, D.; Chandiran, A. K.; Bhaskarwar, A. N.; Torres, T.; Nazeeruddin, Md. K.; Grätzel, M. “Adapting ruthenium sensitizers to cobalt electrolyte systems”, J. Phys. Chem. Lett. 2014, 5, 501–505.
[25] Yum, J. H.; Kessler, F.; Moehl, T.; Ahmad, S.; Nazeeruddin, Md. K.; Grätzel, M. “Cobalt polypyridyl-based electrolytes for p-type dye-sensitized solar cells”, J. Phys. Chem. C 2011, 115, 9772–9779.
[26] Yum, J. H.; Kessler, F.; Moehl, T.; Ahmad, S.; Nazeeruddin, Md. K.; Grätzel, M. “A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials”, Nat. Commun. 2012, 3, 631–638.
[27] Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M. “Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells”, J. Am. Chem. Soc. 2011, 133, 18042–18045.
[28] Burschka, J.; Kessler, F.; Nazeeruddin, M. K.; Grätzel, M. “Co(III) complexes as p-dopants in solid-state dye-sensitized solar cells”, Chem. Mater. 2013, 25, 2986–2990.
[29] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 2013, 499, 316–319.
[30] Norrby, T.; Börje, A.; Zhang, L.; Åkermark, B. “Regioselective fuctionalization of 2,2’-bipyridine and transformations into unsymmetric ligands for coordinaiton chemistry”, Acta Chem. Scand, 1998, 52, 77-85.
[31] Ishizuka, T.; Sinks, L. E.; Song, K.; Hung, S. T.; Nayak, A.; Clays, K.; Therien, M. J. “The roles of molecular structure and effective optical symmetry in evolving dipolar chromophoric building blocks to potent octopolar nonlinear optical chromophores”, J. Am. Chem. Soc. 2011, 133, 2884–2896.
[32] Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess I. “Nature of photovoltaic action in dye-sensitized solar cells”, J. Phys. Chem. B 2000, 104, 2053–2059.
[33] Klahr, B. M.; Hamann, T. W. “Performance Enhancement and Limitations of Cobalt bipyridyl redox shuttles in dye-sensitized solar cells”, J. Phys. Chem. C 2009, 113, 14040–14045.
[34] Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.; J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Grätzel, M. “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells”, ACS Nano 2009, 3, 3103–3109.
[35] Wu, S. J. Ph.D. Thesis, “Design and sythesis of ruthenium dyes for high open-circuit voltage dye-sensitized solar cells”, No.300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan, Department of Chemisrty, National Central University.
[36] Nakade, S.; Makimoto, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. “Roles of electrolytes on charge recombination in dye-Sensitized TiO2 solar cells (2): the case of solar cells using cobalt complex redox couples”, J. Phys. Chem. B 2005, 109, 3488-3493.
[37] Zhang, C.; Dai, J.; Huo, Z.; Pan, X.; Hu, L.; Kong, F.; Huang, Y.; Sui, Y.; Fang, X.; Wang, K.; Dai, S. “Influence of 1-methylbenzimidazole interactions with Li+ and TiO2 on the performance of dye-sensitized solar cells”, Electrochimica Acta 2008, 53, 5503–5508.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明