博碩士論文 101223014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.137.162.105
姓名 許惠然(Huei-ran Syu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成含胺基酸酯之「無環鳥苷」與「去甲替林」共軛化合物作為抗腸病毒藥劑
(Synthesis of Acyclovir–Nortriptyline Conjugates with Amino Acid Ester as Anti-enteroviral Agents)
相關論文
★ 合成醯胺鍵及胺鍵連結之鳥苷與香豆素共軛化合物並探討其構形★ 合成含腺嘌呤核苷之新型奈米碳管
★ 合成具有抗病毒潛力的香豆素與腺嘌呤、腺苷、 肌苷之胺鍵標靶共軛化合物★ 合成腺苷與含氮雜環之硫烷鍵共軛化合物作為抗病毒試劑
★ 腺苷與香豆素共軛連結化合物之合成與其構形之探討★ 探討電子效應和立體障礙對於「胺基醇」轉換成烯類化合物之影響
★ 探討β胺醇之α碳上立體障礙與電子效應對苯炔誘導形成碳與碳雙鍵反應之影響★ 研究「二苯並環庚烯」及「脂芳烴」之「阿昔洛韋」共軛化合物 的結構與抗病毒活性的關係
★ 合成具有抗腸病毒活性「二苯」及 「亞甲基二苯」與「阿昔洛韋」之共軛化合物★ 合成脲鍵連結之「去甲替林」與「核苷」 共軛化合物用作抗腸病毒藥劑
★ 合成「核苷」與「金剛胺」連結之脲鍵化合物作為抗病毒藥劑★ 探討合成含四級胺鹽之金奈米粒子之條件
★ 苯并咪唑與香豆素共軛連結化合物之合成與其構型之探討★ 合成醯胺鍵結苯并咪唑與香豆素之化合物並探討其構形
★ 設計及合成含藥物之新穎鉑錯合物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 人類一直以來需要面對病毒造成的種種疾病,由於許多的病毒目前並沒有適當的藥物和疫苗,導致每年都有數百萬人感染致死,其中又以「核糖核酸病毒」(RNA virus)具有較高的變異性,帶來較嚴重的傷亡,因此如何克服病毒影響人類發展的問題成為了重要課題。
本實驗室參與歐盟「第七架構計畫」下核准之大型跨國計畫Small-molecule Inhibitor Leads versus Emerging and Neglected RNA viruses (SILVER),目的在將「黃病毒科」、「微小核醣核酸病毒科」和「副黏液病毒科」等RNA病毒列為優先研究目標,對其對應藥物進行合成和優化。
過去胡紀如教授實驗室將有抗病毒活性之藥物「無環鳥苷」與「去甲替林」鍵結在一起,所得分子經抗病毒測試後發現對「腸病毒71型」具有良好的抑制活性,因此本人採用此分子架構進行結構修飾,將「無環鳥苷」之羥基與胺基酸鍵結形成酯基作為目標。合成的方法為將含保護之胺基酸藉由耦合試劑「N,N-二環己碳二亞胺」於羧基形成較佳離去基,再和「無環鳥苷」與「去甲替林」共軛化合物進行酯化反應,並將胺基酸上之保護基以「哌啶」去除得到目標產物,並利用「核磁共振光譜儀」及「高解析質譜儀」鑑定其結構。
摘要(英) Virus-related infections pose a serious global threat to human health, causing many human diseases and deaths. Particularly, treatment of RNA viruses lacks effective drugs and vaccines, largely because such viruses mutate rapidly.
The laboratory of Professor Jih Ru Hwu are participating in the European Union’s Seventh Framework Programme. Out project is called, “Small-molecule Inhibitor Leads versus Emerging and Neglected RNA viruses’’ , and focuses on discovering drugs for treating Flaviviridae, Picronviridae, Paramyxoviridae, Alphaviridae, Arenaviridae, Bunyaviridae, Coronaviridae, Noroviridae,and Rhabdoviridae.
Our laboratory has combined two antiviral activity-related drugs together. Experimental results indicate that acyclovir–nortriptyline conjugates inhibit enterovirus replication activity. Correspondingly, this study uses a similar architecture design to molecular structure. This study focuses on acyclovir–nortriptyline conjugates with amino acid esters as the target products. The synthetic method uses coupling reagent N,N’- dicyclohexylcarbodiimide and catalyst 4-(dimethylamino)pyridine react with amino acids, such that the functional group from the amine to better leaving group, and then react with acyclovir derivatives. Finally, a protecting group is removed by piperidine to achieve the final target. The target structures are confirmed by nuclear magnetic resonance spectrometry and high resolution mass spectrometers.
關鍵字(中) ★ 腸病毒
★ 胺基酸
★ 無環鳥苷
★ 去甲替林
★ 抗病毒藥劑
★ 核醣核酸病毒
關鍵字(英)
論文目次 中文摘要 .................................................. i
英文摘要 ................................................. ii
謝誌 ................................................... iii
目錄 ………………………………………………………………............ iv
圖目錄 …………………………………………...........……........ xiv
表目錄 .................................................. xv
縮寫對照表 .............................................. xvi
一、 緒 論 ............................................ 1
二、 結 果 ........................................... 14
2-1 合成含Fmoc保護之Acyclovir–Nortriptyline胺基酸酯共軛化合物(20–23)................................................ 14
2-2 由高解析質譜儀、核磁共振光譜鑑定酯類化合物20之結構..........16
2-3 含Fmoc保護基之Acyclovir–Nortriptyline胺基酸酯共軛化合物20反應的最佳化合成條件...................................... .. 20
2-4 合成Acyclovir–Nortriptyline胺基酸酯共軛化合物 (24–27)… 20
2-5 利用UV-VIS測定胺基酸酯共軛化合物之水溶性................. 21
2-6 利用UV-VIS測定胺基酸酯共軛化合物之脂溶性................. 22
三、 討 論............................................ 23
3-1 探討含保護基之胺基酸與「無環鳥苷」衍生物反應的最佳化合成條件.. 23
3-2 探討胺基酸保護基的選擇................................. 24
3-3 探討含保護基之胺基酸與「無環鳥苷」衍生物反應的合成步驟....... 26
3-4 由Lipinski’s rule探討化合物之藥物開發能力.............. 27
3-5 探討胺基酸酯共軛化合物之水溶性及其藥物開發能力............. 29
3-6 探討胺基酸酯共軛化合物之脂溶性及其藥物開發能力............. 30
四、 結 論 ........................................... 31
五、 實 驗 部 分(Experimental Section) ............... 32
9-(2-[N-(9-Fluorenylmethoxycarbonyl)-L-valyl]oxyethyloxymethyl)-N2- [N-methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene) prop-1-carbamoyl]guanine (20).....................................................34
9-(2-[N-(9-Fluorenylmethoxycarbonyl)-L-phenylalanyl]oxyethyloxyme- thyl)-N2-[N-methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-
ylidene)prop-1-carbamoyl]guanine (21)................... 35
9-(2-[N-(9-Fluorenylmethoxycarbonyl)-L-prolyl]oxyethyloxymethyl)-N2- [N-methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene) prop-1-carbamoyl]guanine (22).................................................... 36
N2-[N-Methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)
prop-1-carbamoyl]-9-[2-(L-valyl)oxyethyloxymethyl]-
guanine (24)........................................... 38
N2-[N-Methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)
prop-1-carbamoyl]-9-[2-(L-phenylalanyl)oxyethyloxymethyl]-
guanine (25)........................................... 39
N2-[N-Methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)
prop-1-carbamoyl]-9-[2-(L-prolyl)oxyethyloxymethyl]-
guanine (26)........................................... 40
六、 參 考 文 獻 ..................................... 44
七、 光 譜 .......................................... 50
參考文獻 1. Neyts, J.; Leyssen, P.; De Clercq, E. Molecular strategies to inhibit the replication of RNA viruses. Antiviral Res. 2008, 78, 9–25.
2. Seventh Framework Programme home page. http://cordis.europa.eu/fp7/home_en.html
3. Sanjuan, R.; Elena, S. F. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 2005, 79, 11555–11558.
4. Oberste, M. S.; Maher, K.; Kilpatrick, D. R.; Pallansch, M. A. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 1999, 73, 1941–1948.
5. Ke, Y.-Y.; Lin, T.-H. Modeling the ligand-receptor interaction for a series of inhibitors of the capsid protein of enterovirus 71 using several three-dimensional quantitative structure-activity relationship techniques. J. Med. Chem. 2006, 49, 4517–4525.
6. Oberste, M. S.; Maher, K.; Brown, B. A. Typing of human enteroviruses by partial sequencing of VP1. Clin. Microbiol. 1999, 37, 1288–1293.
7. Schmidt, N. J.; Lennette, E. H.; Ho, H. H. An apparently new enterovirus isolated from
patients with disease of the central nervous system. J. Infect. Dis. 1974, 129, 304–309.
8. McMinn, P.; Lindsay, K.; Perera, D.; Chan, H. M.; Chan, K. P.; Cardosa, M. J. Human Enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study. Lancet. Infect. Dis. 2007, 44, 646–656.
9. Solomon, T.; Ooi, M. H.; Perera, D. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet. Infect. 2010, 10, 778–790.
10. Lee, M. S.; Tseng, F. C.; Wang, J. R.; Chi, C. Y. Challenges to licensure of enterovirus 71 vaccines. Negl. Trop. Dis. 2012, 6, 1737–1743.
11. Ooi, H. M.; Wong, S. C.; Podin, Y.; Akin, W.; Perera, D. Human rnterovirus 71 disease in Sarawak, Malaysia: A Prospective Clinical, Virological, and Molecular Epidemiological Study. Clin. Infect. Dis. 2007, 44, 646–656.
12. McMinn, P. C. An overview of the evolution of enterovirus 71 and its clinical and public health significance. Microbiol. Rev. 2002, 26, 91–107.
13. Wu, C.-Y.; Wang, H.-C.; Wang, K.-T.; Weng, S.-C.; Chang, W.-H.; Shih, D. Y.-C.; Lo,
C.-F.; Wang, D.-Y. Neutralization of five subgenotypes of enterovirus 71 by Taiwanese human plasma and Taiwanese plasma derived intravenous immunoglobulin. Biologicals 2013, 41, 154–157.
14. McMinn, P. C. Recent advances in the molecular epidemiology and control of human enterovirus 71 infection. Curr. Opin. Virol. 2012, 2, 199–205.
15. Huang, M.-L.; Chiang, P.-S.; Chia, M.-Y.; Luo, S.-T.; Chang, L.-Y.; Lin, T.-Y.;
Ho, M.-S.; Lee, M.-S. Cross-reactive neutralizing antibody responses to enterovirus 71 infections in young children: implications for vaccine development. PLoS Negl. Trop. Dis. 2013, 7, 1–9.
16. Tee, K. K.; Chan, Y. F.; Bible, J. M.; Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicityof the VP1 gene. J. Virol. 2010, 7, 3339–3350.
17. Wong, S.; Solomon, T. Clinical features, diagnosis, and management ofenterovirus 71. Neurol.Rev .2010, 9, 1097–1105.
18. Lin, T.-Y.; Twu, S.-J.; Ho, M.-S.; Chang, L.-Y.; Lee, C.-Y. Enterovirus 71 outbreaks, Taiwan:occurrence and recognition. Emerging Infectious Diseases. 2003, 9, 291–293.
19. Hsueh, C.; Jung, S.-M.; Shin, S.-R; Kuo, T.-T.; Shieh, W.-J.; Zaki, S.; Lin, T.-Y.; Chang, L.-Y.; Ning, H.-C.; Yen, D. Acute encephalomyelitis during an outbreak of enterovirus type 71 infection in Taiwan: report of an autopsy case with pathologic, immunofluorescence, and molecular studies. Modern Patholog. 2000, 13,1200–1205.
20. Ooi, M. H.; Wong, S. C.; Podin, D.; Podin, Y. Identification and validation of clinical predictors for the risk of neurological involvement in children with hand, foot, and mouth disease in Sarawak. Infet. Dis. 2009, 9, 1471–1483.
21. Solomon, T.; Lewthwaite, P.;Perera, D. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet. Infect. Dis. 2010, 10, 778–790.
22. Pourianfar, H. R.; Grollo, L. Development of antiviral agents toward enterovirus 71 infection. J. Microbiol. Immunol. Infect. 2013, 97, 1–8.
23. Tan, C. W.; Lai, K. F.; Sam, I. C.; Chan, W. F. Recent developments in antiviral agents against enterovirus 71 infection. J. Biomed. Sci. 2014, 21, 14.
24. Arita, M.; Wakita, T.; Shimizu, H. Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. J. Gen. Virol. 2008, 89, 2518–2530.
25. Arita, M.; Takebe, Y.; Wakita1, T.; Shimizu1, H. A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. J. Gen. Virol. 2010, 91, 2734–2744.
26. Hwu, J. R.; Lin, S.-Y.; Tsay, S.-C.; Clercq, E. D.; Leyssen, P.; Neyts, J. Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem. 2011, 54, 2114–2126.
27. Pub.Chem. Database. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?cid=4543
28. Bacon, T. H.; Levin, M. J.; Leary, J. J.; Sarisky, R. T.; Sutton, D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy two decades of antiviral therapy. Clin. Microbiol. Rev. 2003, 16, 114–128.
29. Aleiwi, B. A.; Schneider, C. M.; Kurosu, M. Synthesis of ureidomuraymycidine derivatives for structure−activity relationship studies of muraymycins. J. Org. Chem. 2012, 77, 3859−3867.
30. Kaloudis, P.; Paris, C.; Vrantza, D.; Encinas, S.; Perez-Ruiz, R.; Miranda, M. A.; Gimisis, T. Photolabile N-hydroxypyrid-2(1H)-one derivatives of guanine nucleosides: a new method for independent guanine radical generation. Org. Biomol. Chem. 2009, 7, 4965–4972.
31. Park, T.; Todd, E. M.; Nakashima S.; Zimmerman S. C. A quadruply hydrogen bonded heterocomplex displaying high-fidelity recognition. J. Am. Chem. Soc. 2005, 127, 18133–18142.
32. Schiff, G. M.; Sherwood, J. R. Clinical activity of pleconaril in an experimentally induced coxsackievirus A21 respiratory infection. J. Infect. Dis. 2000, 181, 20–26.
33. Wang, J.; Ma, C.; Wu, Y.; Lamb, R. A.; Pinto, L. H.; DeGrado, W. F. Exploring organosilane amines as potent inhibitors and structural probes of influenza A virus M2 proton channel. J. Am. Chem. Soc. 2011, 133, 13844–1384.
34. Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; Clair, M.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl Acad. Sci. USA. 1985, 82, 7096–7100.
35. Dohnalek, J.; Hasek, J.; Duskova, J.; Petrokova, H. Hydroxyethylamine isostere of an HIV-1 protease inhibitor prefers its amine to the hydroxy group in binding to catalytic aspartates. A synchrotron study of HIV-1 protease in complex with a peptidomimetic inhibitor. J. Med. Chem. 2002, 45, 1432-1438.
36. Clercq, E. D. Antiviral drugs in current clinical use. J. Clin. Virol. 2004, 30, 115– 133.
37. Beauchamp, L. M.; Orr, G. F.; Miranda, P. de; Burnette, T.; Krenitsky, T. A. Amino acid ester prodrugs of acyclovir. Antivir. Chem. Chemoth. 1992, 3, 157–164.
38. Shargel, L.; Yu, A.B. Applied biopharmaceutics & pharmacokinetics 4th ed. New York:
McGraw-Hill. 1999.
39. Fasinu, P.; Pillay, V.; Ndesendo, V. M. K.; Toit, L. C.; Choonara, Y. E. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm. Drug Dispos. 2011, 32, 185–209.
40. Adibi, S. A. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology, 1997, 113, 332–340.
41. Han,H.; de Vrueh, R. L.; Rhie, J. K.; Covitz, K. M.; Smith, P. L.; Lee, C. P.; Oh, D. M.; Sadée, W.; Amidon, G. L. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res. 1998, 15, 1154–1159.
42. Carpino, L. A.; Han, G. Y. The 9-fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem. 1972, 37, 3404−3409.
43. Nashed, Y. E.; Mitra, A. K. Synthesis and characterization of novel dipeptide ester prodrugs of acyclovir. Spectrochim. Acta A. 2003, 59, 2033–2039.
44. Ishikawa, M.; Hashimoto, Y. Improvement in aqueous solubility in small molecule drug discoveryprograms by disruption of molecular planarity and symmetry. J. Med. Chem. 2011, 54, 1539–1554.
45. Kraszni, M.; Banyai, I.; Noszal, B. Determination of conformer-specific Partition coefficients in octanol/water. J. Med. Chem. 2003, 46, 2241–2245.
46. Lipinski,C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliver. Rev. 1997, 23, 3-25.
47. Sofia, M.J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P.G.; Ross, B.S.; Wang, P.; Zhang, H.R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A.M.; Steuer, H.M.; Niu, C.; Otto, M.J.; Furman, P.A. Discovery of a β-d-2′-deoxy-2′- α-fluoro-2′-β- C- methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J. Med. Chem. 2010, 53, 7202–7218.
48. Gane, E.J.; Stedman, C.A.; Hyland, R.H.; Ding, X.; Svarovskaia, E.; Symonds, W.T.; Hindes, R.G.; Berrey, M.M. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 2013, 368, 34–44.
49. Li, F.; Maag, H.; Alfredson, T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J. Pharm. Sci. 2008, 97, 1109–1134.
50. Clercq, E.D.; Field, H. J. Antiviral prodrugs – the development of successful prodrug strategies for antiviral chemotherapy. Br. J. Pharmacol. 2006, 147, 1–11.
51. Smith, D. A.; Beaumont, K.; Walker, D. K.; van de Waterbeemd, H. Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem. 2001, 44, 1313–1333.
52. Bookser, B. C.; Ugarkar, B. G.; Matelich, M. C.; Lemus, R. H.; Allan, M.; Tsuchiya, M.; Nakane, M.; Nagahisa, A.; Wiesner, J. B.; Erion, M. D. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-β-D-ribofuranosyl)pyrrolo[2,3-d] pyrimidines substituted at C4 with glycinamides and related compounds. J. Med. Chem. 2005, 48, 7808–7820.
53. Roiter, Y. et al. Interaction of lipid membrane with nanostructured surfaces. Langmuir, 2009, 25, 6287–6299.
54. Kerns, E. H.; Di, L. Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization.; Elsevier: NewYork, 2008.
指導教授 胡紀如 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明