博碩士論文 101223024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.217.144.32
姓名 王劭群(Shao-Chun Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以水相系統合成類沸石咪唑骨架材料(ZIF-90)及其在生物酵素催化上的應用
(Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size and its Application in Biocatalysis)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 類沸石咪唑骨架材料是屬於金屬有機骨架材料的範疇,其主要是利用咪唑或是咪唑衍生
物(Im)當作有機配位體與鋅、鈷等過渡金屬(M)鍵結所形成的聚合物,結構中Im-M-Im的
鍵結角度約為145度,與天然沸石中Si-O-Si的鍵結角度大約相同,故被稱之為類沸石咪
唑骨架材料,目前主要有儲存氣體、分離混和氣體、非均相催化和藥物載體的應用。本
論文所介紹的類沸石咪唑骨架材料-90(Zeolitic Imidazolate Framework-90;ZIF-90)
已有報導指出此材料易於官能基化的特點,並具有極為優異的水熱穩定性。然而,目前
合成ZIF-90之方法大多需使用有機溶劑(如DMF),但若大量製造ZIF-90時,所產生的廢
液將對於環境造成負擔。為了符合綠色化學之製程,此研究中,我們提供了一種於水相
系統中製備ZIF-90之方法,能夠製造出粒徑大小一致且尺寸具有均一性的ZIF-90。
摘要(英) In zeolitic imidazolate frameworks (ZIFs), a subclass of metal–organic
frameworks (MOFs), metal ions such as Zn2+ and Co2+ are linked through the
nitrogen atoms of the deprotonated imidazolate to form neutral frameworks
and provide a tunable crystalline structure and porosity and a high internal
surface area. Additionally, the M–Im–M angle is similar to that of the
Si–O–Si angle (145o) preferred in zeolites. This fact has led to the
synthesis of a large number of ZIFs with zeolite-type tetrahedral
topologies. Therefore, ZIFs have recently attracted considerable attention
for applications in gas storage, separation of small molecules,
heterogeneous catalysis, sensors and drug delivery.
Zeolitic Imidazolate Framework-90 (ZIF-90), the main character of the
thesis, was reported to have high thermal and solvent stability. However,
most of the strategies reported so far on the synthesis of ZIF-90 have
involved the use of solvents, such as dimethyl formamide (DMF), methanol, or
other organic solvents which are also expensive, in addition to their
environmental concerns, such as toxicity, high-pollution, and waste
treatment issues. Herein, we report for the first time, a rapid and
eco-friendly strategy for the synthesis of ZIF-90 under aqueous conditions,
and thus, ZIF-90 having uniform particle sizes can be produced.
關鍵字(中) ★ 微孔洞材料
★ 類沸石咪唑骨架材料
★ 固定化酵素
★ 金屬有機骨架材料
★ 環保
關鍵字(英) ★ Microporous material
★ Zeolitic imidazolate framework
★ Immobolized enzyme
★ Metal-organic framework
★ Environmental friendly
論文目次 中文摘要 A
Abstract C
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-2 類沸石咪唑骨架材料 3
1-3 類沸石咪唑骨架材料-90 5
1-4 研究動機與目的 6
第二章 實驗部分 8
2-1 實驗藥品 8
2-2 實驗儀器與方法 8
2-2-1 X射線粉末繞射儀 (Powder X-ray Diffractometer,XRD) 8
2-2-2 場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope,SEM) 10
2-2-3 等溫氮氣吸/脫附儀 (Accelerated Surface Area and Porosimetry system,ASAP) 11
2-2-4 熱重分析儀 (Thermogravimetric Analyzer,TGA) 13
2-2-5 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer,FT-IR) 14
2-2-6 固態核磁共振儀 (Solid State Nuclear Magnetic Resonance,SSNMR) 15
2-3類沸石咪唑骨架材料的合成 16
2-3-1 純水相系統合成類沸石咪唑骨架材料-90 16
2-3-2醇水混和系統合成類沸石咪唑骨架奈米材料-90 17
第三章 結果與討論 19
3-1純水相系統合成類沸石咪唑骨架材料-90 19
3-1-1 類沸石咪唑骨架材料-90(ZIF-90)的鑑定 19
3-1-2 不同濃度的乙烯基吡咯烷酮水溶液對ZIF-90合成結果之討論 22
3-1-3 不同的莫耳當量比(Zn/ICA)對ZIF-90合成結果之討論 23
3-2 醇水混和系統合成類沸石咪唑骨架奈米材料-90 24
第四章 結論 28
第五章 緒論 29
5-1 固定化酵素(Immobilized Enzyme) 29
5-2 過氧化氫酶(Catalase) 32
5-3 蛋白酶K(Proteinase K) 35
5-4 研究動機與目的 37
第六章 實驗部分 40
6-1 實驗藥品 40
6-2 實驗儀器與方法 41
6-2-1 紫外光可見光分光光譜儀 (UV/VIS Spectophotometer) 41
6-2-2 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 42
6-2-3 偵測蛋白質的濃度(Bradford Assay) 46
6-2-4 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation in Xylenol orange assay, FOX assay) 47
6-3 類沸石咪唑骨架-90包覆過氧化氫酶材料(CAT@ZIF-90)的合成 49
6-4 類沸石咪唑骨架-90包覆過氧化氫酶材料(CAT@ZIF-90)中蛋白質的含量 50
6-5 類沸石咪唑骨架-90包覆過氧化氫酶材料(CAT@ZIF-90)的活性測試 50
6-5添加蛋白酶(Proteinase K)的抑制測試 51
第七章 結果與討論 52
7-1 類沸石咪唑骨架材料-90包覆過氧化氫酶(CAT@ZIF-90)的鑑定 52
7-2 類沸石咪唑骨架材料-90包覆過氧化氫酶材料(CAT@ZIF-90)的活性 55
7-3 添加蛋白酶(Proteinase K)的結果與討論 56
第八章 結論 57
第九章 參考文獻 58
第十章 附錄 65
參考文獻 1. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
2. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149).
3. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chem. Rev. 2011, 112 (2), 703-723.
4. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 2011, 112 (2), 782-835.
5. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chem. Rev. 2011, 112 (2), 869-932.
6. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev. 2011, 112 (2), 1196-1231.
7. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev. 2011, 112 (2), 1055-1083.
8. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2011, 112 (2), 1105-1125.
9. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2011, 112 (2), 1232-1268.
10. Yoon, M.; Suh, K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angew. Chem. Int. Ed. 2013, 52 (10), 2688-2700.
11. Li, S.-L.; Xu, Q., Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6 (6), 1656-1683.
12. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 1990, 112 (4), 1546-1554.
13. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem., Int. Ed. Engl. 1985, 24 (12), 1026-1040.
14. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Trans. 2011, 40 (2), 321-330.
15. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater. 2009, 21 (13), 2580-2582.
16. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8 (3), 211-214.
17. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 2008, (31), 3642-3644.
18. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2011, 112 (2), 933-969.
19. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
20. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2009, 43 (1), 58-67.
21. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 2006, 103 (27), 10186-10191.
22. Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chem. Eur. J. 2010, 16 (5), 1560-1571.
23. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun. 2011, 47 (37), 10275-10277.
24. Song, Q.; Nataraj, S. K.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A.; Sivaniah, E., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5 (8), 8359-8369.
25. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2007, 129 (17), 5314-5315.
26. Han, S. S.; Choi, S.-H.; Goddard, W. A., Improved H2 Storage in Zeolitic Imidazolate Frameworks Using Li+, Na+, and K+ Dopants, with an Emphasis on Delivery H2 Uptake. The Journal of Physical Chemistry C 2011, 115 (8), 3507-3512.
27. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J. Am. Chem. Soc. 2012, 134 (35), 14345-14348.
28. Wee, L. H.; Lescouet, T.; Ethiraj, J.; Bonino, F.; Vidruk, R.; Garrier, E.; Packet, D.; Bordiga, S.; Farrusseng, D.; Herskowitz, M.; Martens, J. A., Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. ChemCatChem 2013, 5 (12), 3562-3566.
29. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorg. Chem. 2014, 53 (11), 5411-5413.
30. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
31. Vasconcelos, I. B.; Silva, T. G. d.; Militao, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv. 2012, 2 (25), 9437-9442.
32. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130 (38), 12626-12627.
33. Raveendran, P.; Ikushima, Y.; Wallen, S. L., Polar Attributes of Supercritical Carbon Dioxide. Acc. Chem. Res. 2005, 38 (6), 478-485.
34. Bae, T.-H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S., A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals. Angew. Chem. Int. Ed. 2010, 49 (51), 9863-9866.
35. Yu, L.-Q.; Yang, C.-X.; Yan, X.-P., Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. J. Chromatogr. A 2014, 1343 (0), 188-194.
36. Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47 (7), 2071-2073.
37. Gross, A. F.; Sherman, E.; Vajo, J. J., Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 2012, 41 (18), 5458-5460.
38. Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F., Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69 (1), 1-9.
39. Brown, A. J.; Johnson, J. R.; Lydon, M. E.; Koros, W. J.; Jones, C. W.; Nair, S., Continuous Polycrystalline Zeolitic Imidazolate Framework-90 Membranes on Polymeric Hollow Fibers. Angew. Chem. Int. Ed. 2012, 51 (42), 10615-10618.
40. Jauncey, G. E. M., The Scattering of X-Rays and Bragg′s Law. Proc. Natl. Acad. Sci. 1924, 10 (2), 57-60.
41. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57 (4), 17.
42. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319.
43. Langmuir, I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40 (9), 1361-1403.
44. Andrew, E. R.; Bradbury, A.; Eades, R. G., Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed. Nature 1958, 182 (4650), 1659-1659.
45. Pastoriza-Santos, I.; Liz-Marzán, L. M., Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir 2002, 18 (7), 2888-2894.
46. Nune, S. K.; Thallapally, P. K.; Dohnalkova, A.; Wang, C.; Liu, J.; Exarhos, G. J., Synthesis and properties of nano zeolitic imidazolate frameworks. Chem. Commun. 2010, 46 (27), 4878-4880.
47. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15 (9), 1794-1801.
48. Messing, R. A., Chapter 1 - INTRODUCTION AND GENERAL HISTORY OF IMMOBILIZED ENZYMES. In Immobilized Enzymes for Industrial Reactors, Messing, R. A., Ed. Academic Press: 1975, pp 1-10.
49. Datta, S.; Christena, L. R.; Rajaram, Y., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
50. Brady, D.; Jordaan, J., Advances in enzyme immobilisation. Biotechnol. Lett 2009, 31 (11), 1639-1650.
51. Chen, Y.; Lykourinou, V.; Hoang, T.; Ming, L.-J.; Ma, S., Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorg. Chem. 2012, 51 (17), 9156-9158.
52. Wong, L. S.; Thirlway, J.; Micklefield, J., Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. J. Am. Chem. Soc. 2008, 130 (37), 12456-12464.
53. Hsieh, H.-J.; Liu, P.-C.; Liao, W.-J., Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol. Lett 2000, 22 (18), 1459-1464.
54. Ispas, C.; Sokolov, I.; Andreescu, S., Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal. Bioanal. Chem. 2009, 393 (2), 543-554.
55. Bernfeld, P.; Wan, J., Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science 1963, 142 (3593), 678-679.
56. Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W., Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem. 2011, 46 (8), 1565-1571.
57. Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K., Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal. B: Enzym. 2009, 56 (4), 189-195.
58. Wen, H.; Nallathambi, V.; Chakraborty, D.; Calabrese Barton, S., Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim Acta 2011, 175 (3-4), 283-289.
59. Kim, J.; Jia, H.; Wang, P., Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 2006, 24 (3), 296-308.
60. Halliwell, B.; Gutteridge, J. M. C., The definition and measurement of antioxidants in biological systems. Free Radical Biol. Med. 1995, 18 (1), 125-126.
61. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39 (1), 44-84.
62. BLOKHINA, O.; VIROLAINEN, E.; FAGERSTEDT, K. V., Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann. Bot. 2003, 91 (2), 179-194.
63. MatÉs, J. M.; Pérez-Gómez, C.; De Castro, I. N., Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32 (8), 595-603.
64. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. 1970; Vol. 50, p 319-375.
65. Fita, I.; Rossmann, M. G., The NADPH binding site on beef liver catalase. Proc. Natl. Acad. Sci. 1985, 82 (6), 1604-1608.
66. Chance, B., EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. J. Biol. Chem. 1952, 194 (2), 471-481.
67. Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H., Proteinase K from Tritirachium album Limber. Eur. J. Biochem. 1974, 47 (1), 91-97.
68. Edgar, K.; Uwe, F., Proteinase K from the Mold Tritirachium album Limber. Specificity and Mode of Action. In Hoppe-Seyler´s Zeitschrift für physiologische Chemie, 1976; Vol. 357, p 937.
69. La Claire, J., II; Herrin, D., Co-isolation of high-quality DNA and RNA from coenocytic green algae. Plant Mol. Biol. Rep. 1997, 15 (3), 263-272.
70. Holm, C.; Meeks-Wagner, D. W.; Fangman, W. L.; Botstein, D., A rapid, efficient method for isolating DNA from yeast. Gene 1986, 42 (2), 169-173.
71. Petsch, D.; Deckwer, W. D.; Anspach, F. B., Proteinase K Digestion of Proteins Improves Detection of Bacterial Endotoxins by theLimulusAmebocyte Lysate Assay: Application for Endotoxin Removal from Cationic Proteins. Anal. Biochem. 1998, 259 (1), 42-47.
72. Brdiczka, D.; Krebs, W.; Kloock, P., Localization of enzymes by means of proteases. Biochimica et Biophysica Acta (BBA) - General Subjects 1973, 297 (2), 203-212.
73. Bennion, B. J.; Daggett, V., Protein Conformation and Diagnostic Tests: The Prion Protein. Clin. Chem. 2002, 48 (12), 2105-2114.
74. Jany, K.-D.; Lederer, G.; Mayer, B., Amino acid sequence of proteinase K from the mold Tritirachium album Limber: Proteinase K — a subtilisin-related enzyme with disulfide bonds. FEBS Lett. 1986, 199 (2), 139-144.
75. Burrell, M. M., Enzymes of Molecular Biology. Humana Press: 1993.
76. Müller, A.; Hinrichs, W.; Wolf, W. M.; Saenger, W., Crystal structure of calcium-free proteinase K at 1.5-A resolution. J. Biol. Chem. 1994, 269 (37), 23108-23111.
77. Sun, C.-Y.; Qin, C.; Wang, X.-L.; Yang, G.-S.; Shao, K.-Z.; Lan, Y.-Q.; Su, Z.-M.; Huang, P.; Wang, C.-G.; Wang, E.-B., Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012, 41 (23), 6906-6909.
78. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chem. Eur. J. 2013, 19 (34), 11139-11142.
79. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72 (1–2), 248-254.
80. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990, 268 (1), 69-71.
81. Ou, P.; Wolff, S. P., A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J. Biochem. Bioph. Methods 1996, 31 (1–2), 59-67.
82. Nelson, D. P.; Kiesow, L. A., Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Anal. Biochem. 1972, 49 (2), 474-478.
83. Ogura, Y.; Yamazaki, I., Steady-State Kinetics of the Catalase Reaction in the Presence of Cyanide. J. Biochem. 1983, 94 (2), 403-408.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2014-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明