博碩士論文 101223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:34.225.194.144
姓名 莊志遠(Chih-yuan Chuang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 改良式具高分岐結構的添加劑 對於電極界面鋰離子遷移之探討
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鋰離子電池安全性一直是受矚目的重要議題之一,隨著高耗能3C隨身器材及電動汽機車(Hybrid Electric Vehicle, HEV、Electric Vehicle, EV)的快速發展,鋰離子電池能量密度和電容量也不斷提升,來滿足使用需求,因而解決鋰離子電池安全性的方案更為迫切。先前研究指出,高溫下引發鋰離子電池熱失控的主要導火線為:(a)鈍化膜在高溫下分解,活性物質裸露於電解液中,造成電解液分解,釋放大量的熱﹔(b)正極材料在高溫下充電時,易釋出氧,而活性氧進一步與電解液作用,加速電池內部的熱量累積,並引發更多副反應及熱量的生成,即可能造成電池的危害,甚至發生燃燒及爆炸事件。
本研究利用自由基捕捉劑巴比妥酸的衍生物1,3-Dimethylbarbituric acid(1,3DBTA)與雙馬來醯亞胺1,1’-(Methylenedi-4,1-phenylene)bismaleimide(BMI)及其衍生物(C4BMI, Si(MI)3, PMI)進行聚合,聚合出以1,3DBTA為核心的高分岐寡聚物,來做為鋰離子電池三元系正極材料Li[Ni1/3Mn1/3Co1/3]O2(NMC333)中的添加劑。主要目的是藉由高分岐寡聚物在三元材料表面形成不阻礙鋰離子穿透且具高溫穩定性的鈍化膜,達到保護電極之功用;當電池溫度過高時,1,3DBTA截取正極材料在高溫釋出的氧並阻斷燃燒鏈鎖反應,避免了熱爆衝現象,達到保障安全之目標。由高溫循環壽命測試可觀察到添加劑有效提升鈍化膜高溫的穩定性;由電性表現得知,添加核心式的高分岐寡聚物(o-BMI)其6C-rate的電容量保持率達76.0% (v.s 0.2C-rate);雖然添加劑造成內電阻增加約10 Ohm但鋰離子擴散係數沒有顯著下降,得知其鋰離子通道仍然通暢不受到阻塞;進一步由XPS光譜分析添加劑對鈍化膜的影響,證實添加劑有效降低電解液(鋰鹽及溶劑)的分解,並抑制LiF及Li2CO3的生成。由以上結果推測添加劑作用機制是經由充放電驅動添加劑尾端剩餘的C=C進行二次聚合,或與電解質液中的Vinylene carbonate(VC)及電解液分解生成的乙烯發生聚合反應,使得個別的高分岐添加劑在鈍化膜形成的化成過程中,再次聚合於電極表面,形成具多孔隙包覆的保護層(鈍化膜),而此保護層不阻礙到鋰離子嵌入嵌出的孔道。並實際應用於不同比例之NMC正極活性材料,證實此添加劑對正極材料具特定選擇性及適用性,可藉由不同MI結構數量設計來達到添加劑對特定材料的應用。
本研究證實以具碳碳雙鍵的高分岐添加劑能在化成期間參與鈍化膜形成。在正極材料表面包覆不阻礙鋰離子嵌入嵌出之鈍化膜,提升鈍化膜的熱穩定性,形成高溫仍穩定的鈍化膜,增進高溫下電池循環壽命能力。此一添加物兼具了改善鋰離子電池安全性,以及達成保護電極之功效。
摘要(英) Safety issue has always been the primary concern for lithium ion battery in all field of applications. The lithium battery safety issue is aggravated with the increasing demand for higher power and energy density in advanced electronic devices and in electric car applications. Resolving the safety issue becomes the most urgent goal for lithium battery technology for wider adaptation, especially by transportation sector.
The safety issue is primarily originated from the use of volatile organic solvent such as,EC, PC, and DMC.etc that contains thermally decomposable lithium salts (LiPF6, LiClO4 etc.). Few approaches are explored to improve the lithium battery safety: (a). The use of electrode materials without oxygen release (LiFePO4). (b). use of non- volatile solid-state electrolytes (ionic liquids). (c). use of non-flammable or fire retardant separator material (ceramic) (d). External electronic circuit protection, and (e) shutting down the thermal run-away by the use of additives.
In this study, we disclosed a net-work like solid electrolyte interface formed from a hyper branched additive which circumference electrode active materials. The additive forms a porous protective layer (in the order of less than few nm) which hinders thick SEI formation and prevents direct electrolyte contact with the active material thus improves cycle-life. The net-work SEI layer formed by hyper branch oligomer with flexible side chain created fast lithium ion transport path across/from the active materials, and improves high rate performance at elevated temperature. The protective layer can be thermally triggered to neutralize radical species released by the electrodes upon heating over 135 0C; which cut-down the combustion chain reaction, thus quenched thermal run-away. Cycling at elevated temperature (50-60 oC) indicates this protective layer stabilizes the electrode surface and giving it better cyclability. Charging at 6C, the protective cathode yielded 76% of capacity compared to that arrived at 0,2C rate , which is higher than the one without applying the additive when. Although the interfacial resistance reached about 10 Ohm, lithium diffusion constant is un- affected due to the porous nature of the net-work like solid electrolyte interface. Furthermore, we have examined and compared the thermal-quenching effects using other BTA derivatives such as 1,3DBTA、5,5DBTA and determined the plausible mechanisms to quenching thermal run away. Finally, we have also examined the effectiveness of this additive when applying on other cathode materials such as LiMnO2 and LiCoO2.
A surface characterization show the additive has participate with the SEI formation during the first few charge/discharge cycle and forms a porous and stable protective layer over-coated the cathode materials. These results indicated this material has served as an active protective shut down agent in the event of internal shortage and/or over charging thus elevated safety of lithium ion battery.
關鍵字(中) ★ 鋰離子電池
★ 添加劑
★ 安全性添加劑
★ 鈍化膜
關鍵字(英)
論文目次 摘要...........i
Abstract...........iii
誌謝辭...........v
目錄...........vi
圖目錄...........ix
表目錄...........xiii
第一章 緒論...........1
1-1 前言...........1
1-2 鋰離子電池基本工作原理...........3
1-3 鋰離子電池目前面臨的安全問題...........4
1-4 研究動機與目的...........6
第二章 文獻回顧...........8
2-1 陰極材料特性介紹...........8
2-2 陰極材料熱穩定性...........10
2-3 鋰電池循環壽命及安全性改進...........13
2-3-1 正增溫係數層...........14
2-3-2 活性材料改質...........15
2-3-3 安全性添加劑...........18
2-4 固態電解質界面(SEI)...........25
2-4-1 鈍化膜的形成機制...........25
2-4-2 SEI膜的鑑定方法...........29
2-4-3 SEI膜的安全性改善方式...........33
第三章 實驗及原理技術...........39
3-1 實驗藥品、器材與儀器設備...........39
3-1-1 實驗藥品...........39
3-1-2 實驗器材...........41
3-1-3 實驗儀器設備...........41
3-2 實驗方法...........42
3-2-1 高分岐添加劑合成方法...........43
3-2-2 正極極板之製作...........43
3-2-3 鈕扣型電池組裝...........44
3-3 實驗儀器原理及介紹...........45
3-3-1 核磁共振儀(NMR)...........45
3-3-2 超高解析場發射掃描式電子顯微鏡(UHR-FE-SEM)...........46
3-3-3 傅立葉式紅外線吸收光譜儀(FT-IR)...........46
3-3-4 X-光光電子能譜儀(XPS)...........47
3-4 鋰電池效能及電化學特性分析...........47
3-4-1 電池充放電測試...........47
3-4-2 循環伏安法分析(CV)...........48
3-4-3 交流阻抗分析儀(AC Impedance)...........49
第四章 結果與討論...........51
4-1 高分岐添加劑修飾在陰極三元材料系統中之分析與電性探討......52
4-1-1 高分岐添加劑聚合程度分析...........52
4-1-2 不同C-rate下電池性能測試...........56
4-1-3 循環伏安法測試...........58
4-1-4 掃描式電子顯微鏡之電極表面形態分析...........60
4-1-5 電池內電阻之變化...........61
4-1-6 鋰離子擴散係數...........64
4-1-7 常溫循環壽命測試...........66
4-1-8 60℃高溫循環壽命測試...........68
4-1-9 高分岐添加劑通用性分析...........70
4-2 添加劑影響固態電解質界面(SEI)生成之鑑定分析...........71
4-2-1 BMI之殘餘碳碳雙鍵鑑定...........72
4-2-2 固態電解質界面之組成分析...........73
第五章 結論與未來展望...........77
參考文獻...........79
參考文獻 [1]蕭光哲, “下世代動力鋰電池正極材料研究概況” 工業材料雜誌, 第303期, 159-169頁, 2012.
[2]劉偉仁; 郭信良, “鋰離子電池材料最新發展趨勢(上)” 工業材料雜誌, 第302期, 131-137頁, 2012.
[3]SANYO battery comparison, 2007 brochure.
[4]Macworld vol.36, pp.12, 1995.
[5]Tesla電動車起火事故 http://www.techbang.com/posts/15058-31-seconds-of-fire-movie-tesla-lost-1233-billion?related_post=true
[6]C. L. Campion,; W. Li,; B. L. Lucht, “Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries” Journal of The Electrochemical Society, vol.152, pp.A2327-A2334,2005.
[7]W. Li,; C. Campion,; B. L. Lucht,; B. Ravdel,; J. DiCarlo,; K. M. Abrahamb, Journal of The Electrochemical Society, vol.152, pp.A1361-A1365, 2005.
[8]鄭錦淑; 楊長榮; 許榮木, “高安全性鋰電池材料”, 工業材料雜誌, 第275期, 077-082頁, 2009.
[9]M. Armand,; J.-M. Tarascon, “Building better batteries”, Nature, Vol.451, pp.652-657, 2008.
[10]趙信豪, “鋰電池三元系正極材料之添加劑制備及電池性能探討”, 國立中央大學化學系碩士論文, 2012.
[11]鄭錦淑, “鋰電池材料熱分析研究”, 工業材料雜誌, 第264期, pp.118-122, 2008.
[12]Sandia National Laboratories, Fall 2007 ECS Meeting.
[13]陳金銘, 能源材料課程講義
[14]L. X. Yuan,; Z. H. Wang,; W. X. Zhang,; X. L. Hu,; J. T. Chen,; Y. H. Huang,; J. B. Goodenough, “Development and challenges of LiFePO4 cathode material for lithium-ion batteries”, Energy Environ. Sci, vol.4, pp.269–284 ,2011.
[15]Y. Liang,; X. Han,; X. Zhou,; J. Sun,; Y. Zhou, “Significant improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 cathode on volumetric energy density and cycling stability at high rate”, Electrochemistry Communications, vol.9, pp.965-970, 2007.
[16]J. Li,; Z.R. Zhang,; X.J. Guo,; Y. Yang, “The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0 < x ≤ 1) as a cathode material in lithium ion batteries”, Solid State Ionics, vol.177, pp.1509-1516, 2006.
[17]T. Ohzuku,; R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries”, Journal of Power Sources, vol.174, pp.449-456, 2007.
[18]A. Hirano,; R. Kanno,; Y. Kawamoto,; Y. Takeda,; K. Yamaura,; M. Takano,; K. Ohyama,; M. Ohashi,; Y. Yamaguchi, “Relationship between non-stoichiometry and physical properties in LiNiO2”, Solid State Ionics, vol.78, pp.123-131, 1995.
[19]A. Yamada,; M. Tanaka, “Jahn-Teller structural phase transition around 280K in LiMn2O4”, Materials Research Bulletin, vol.30, pp.715-721, 1995.
[20]F. Zhou,; K. Kang,; T. Maxisch,; G. Ceder,; D. Morgan, “The electronic structure and band gap of LiFePO4 and LiMnPO4”, Solid State Communications, vol.132, pp.181-186, 2004.
[21]費定國, “鋰離子電池在電動車市場之展望”, 工業材料雜誌, vol.229, pp.141-146, 2006.
[22]M. Gozu,; K. Świerczek,; J. Molenda, “Structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides prepared by a soft chemistry method”, Journal of Power Sources, vol.194, pp.38-44, 2009.
[23]Z. Zhang,; D. Fouchard,; J.R. Rea, “Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells”, Journal of Power Sources, vol.70, pp.16-20, 1998.
[24]D.D. MacNeil,; Z. Lu,; Z. Chen,; J.R. Dahn, “A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes”, Journal of Power Sources, vol.108, pp.8–14, 2002.
[25]T. Ohzuku,; Y. Makimura, “Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries”, Chemistry Letters, vol.7, pp.642, 2001.
[26]X.M. Feng,; X.P. Ai,; H.X. Yang, “A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries”, Electrochemistry Communications, vol.6, pp.1021–1024, 2004.
[27]P.G. Balakrishnan,; R. Ramesh,; T. Prem Kumar, “Safety mechanisms in lithium-ion batteries” Journal of Power Sources, vol.155, pp.401–414 2006.
[28]Y. Huang,; J. Chen,; J. Ni,; H. Zhou,; X. Zhang, “A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2”, Journal of Power Sources, vol.188, pp.538-545, 2009.
[29]Y. Huang,; J. Chen,; F. Cheng,; W. Wan,; W. Liu,; H. Zhou,; X. Zhang, “A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process”, Journal of Power Sources, vol.195, pp.8267-8274, 2010.
[30]S. S. Zhang, “A review on electrolyte additives for lithium-ion batteries”, Journal of Power Sources, vol.162, pp.1379–1394, 2006.
[31]M. L. Lee,; Yu. H. Li,; J. W. Yeh,; H. C. Shih, “Improvement in safety and cycle life of lithium-ion batteries by employing quercetin as an electrolyte additive”, Journal of Power Sources, vol.214, pp.251-257, 2012.
[32]P. G. Pietta, “Flavonoids as Antioxidants”, Journal of Natural Products, vol.63, pp.1035-1042, 2000.
[33]D. Bedner et al., “Fire-resistant epoxy resin compositions containing microparticulated phosphorus fireproofing agent”, US2006/102882 A1, 2006.
[34]H. S. Murase et al., “Flame retardant composition with improved fluidity, flame retardant resin composition and molded products”, US2007/0176154 Al, 2007.
[35]W. Li,; B.L. Lucht,; “Lithium-Ion Batteries: Thermal Reactions of Electrolyte with the Surface of Metal Oxide Cathode Particles “, Journal of The Electrochemical Society, vol.153, pp.A1617-A1625, 2006.
[36]A. Xiao,; W. Li,; B.L. Lucht, “Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF6-based electrolyte”, Journal of Power Sources, vol.162, pp.1282–1288, 2006.
[37]M.Q. Xu,; L.S. Hao,; Y.L. Liu,; W.S. Li,; L.D. Xing,; B. Li,; “Experimental and Theoretical Investigations of Dimethylacetamide (DMAc) as Electrolyte Stabilizing Additive for Lithium Ion Batteries”, Journal Physical Chemistry C, vol.115, pp.6085–6094, 2011.
[38]J. Hu,; Z. Jin,; H. Zhong,; H. Zhan,; Y. Zhou,; Z. Li, “A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries”, Journal of Power Sources, vol.197, pp.297–300, 2012.
[39]M. Gali´nski,; A. Lewandowski,; I. St˛epniak, “Ionic liquids as electrolytes”, Electrochimica Acta, vol.51, pp.5567–5580, 2006.
[40]J.A. Choia,; Y. K. Sunb,; E. G. Shimc,; B. Scrosatid,; D. W. Kima, “Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries”, Electrochimica Acta, vol.56, pp.10179–10184, 2011.
[41]K. S. Park,; D. Im,; A. Benayad,; A. Dylla,; K. J. Stevenson,; J. B. Goodenough, “LiFeO2-Incorporated Li2MoO3 as a Cathode Additive for Lithium-Ion Battery Safety”, Chem. Mater., vol.24, pp.2673−2683, 2012.
[42]F. M. Wang,; S. C. Lo,; C. S. Cheng,; J. H. Chen,; B. J. Hwang,; H. C. Wu, “Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery”, Journal of Membrane Science, vol.368, pp.165-170, 2011.
[43]J. P. Pan,; G. Y. Shiau,; S. S. Lin,; K. M. Chen,; “Effect of barbituric acid on the self-polymerization reaction of bismaleimides”, Journal of Applied Polymer Science, vol.45, pp.103-109, 1992.
[44]C. H. Doh,; D. H. Kim,; H. S. Kim,; H. M. Shin,; Y. D. Jeong,; S. I. Moon,; B. S. Jin,; S. W. Eom,; H. S. Kim,; K. W. Kim,; D. H. Oh,; A. Veluchamy, “Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test”, Journal of Power Sources, vol.175, pp.881-885, 2008.
[45]S. I. Tobishima,; K. Takei,; Y. Sakurai,; J. I. Yamaki, “Lithium ion cell safety”, Journal of Power Sources, vol.90, pp.188-195, 2000.
[46]Y. Ein-Eli,; S.F. McDevitt,; D. Aurbach,; B. Markovsky,; A. Schecheter,; “Methyl Propyl Carbonate: A Promising Single Solvent for Li-Ion Battery Electrolytes”, Journal of The Electrochemical Society, vol.144, pp.L180-L184, 1997.
[47]D. Aurbach,; Y. Ein-Eli, “The Study of Li-Graphite Intercalation Processes in Several Electrolyte Systems Using In Situ X-Ray Diffraction”, Journal of The Electrochemical Society, vol.142 pp.1746-1752, 1995.
[48]葉定儒; 陳金銘; 廖世傑 “鋰電池機能性添加劑研究” 工業材料雜誌, 第290期, pp.78-84, 2011.
[49]D. Bar-Tow,; E. Peled,; L. Burstein, “A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries”, Journal of The Electrochemical Society, vol.146, pp.824-832, 1999.
[50]G. Li,; H. Li,; Y. Mo,; L. Chen,; X. Huang, “Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS)”, Journal of Power Sources, vol.104, pp.190-194, 2002.
[51]S. S. Zhang,; K. Xu,; T. R. Jow, “EIS study on the formation of solid electrolyte interface in Li-ion battery” Electrochimica Acta, vol.51, pp.1636-1640, 2006.
[52]S. Matsuta,; T. Asada,; K. Kitaura, “Vibrational Assignments of Lithium Alkyl Carbonate and Lithium Alkoxide in the Infrared Spectra An Ab Initio MO Study”, Journal of The Electrochemical Society, vol.147 pp.1695-1702, 2000.
[53]T. Eriksson,; A. M. Andersson,; C. Gejke,; T. Gustafsson,; J. O. Thomas, “Influence of Temperature on the Interface Chemistry of LixMn2O4 Electrodes”, Langmuir, vol.18, pp.3609-3619, 2002.
[54]D. Aurbach, “Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries”, Journal of Power Sources, vol.89, pp.206–218, 2000.
[55]D. E. Arreaga-Salas,; A. K. Sra,; K. Roodenko,; Y. J. Chabal,; C. L. Hinkle, “Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries”, Journal Physical Chemistry C, vol.116, pp.9072−9077, 2012.
[56]F. M. Wang,; H. M. Cheng,; H. C. Wu,; S. Y. Chu,; C. S. Cheng,; C. R. Yang, “Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries”, Electrochimica Acta, vol.54, pp.3344-3351, 2009.
[57]S. Leroy,; H. Martinez,; R. Dedryvère,; D. Lemordant,; D. Gonbeau, “Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study”, Applied Surface Science, vol.253, pp.4895-4905, 2007.
[58]T. Kubota,; M. Ihara,; S. Katayama,; H. Nakai,; J. Ichikawa, “1,1-Difluoro-1-alkenes as new electrolyte additives for lithium ion batteries”, Journal of Power Sources, vol.207, pp.141– 149, 2012.
[59]M. Yokota,; D. Fujita,; J. Ichikawa, ” Activation of 1,1-Difluoro-1-alkenes with a Transition-Metal Complex: Palladium(II)-Catalyzed Friedel)Crafts-Type Cyclization of 4,4-(Difluorohomoallyl)arenes”, Organic Letters, vol.9, pp.4639-4642, 2007.
[60]D. Chalasania,; J. Li,; N. M. Jackson,; M. Payne,; B. L. Lucht, “Methylene ethylene carbonate: Novel additive to improve the high temperature performance of lithium ion batteries”, Journal of Power Sources, vol.208 pp.67–73, 2012.
[61]黨苓之, “高性能鋰離子電池的製備”, 國立中央大學化學系碩士論文, 2010.
[62]F.E. Yu,; J.M Hsu,; J.P. Pan,; T.H. Wang,; C.S. Chern, “Kinetics of Michael Addition Polymerizations of N,N’-Bismaleimide-4,4’-Diphenylmethane With Barbituric Acid, Polymer Engineering and Science, Vol.53, pp204-211, 2013.
[63]孫世勇, “應用核磁共振技術觀察雙馬來亞醯胺和巴比妥酸在甲基吡咯烷酮溶劑下聚合反應的反應機制與動力學行為” 中原大學化學系碩士論文, 2008.
[64]莊全超; 徐守冬; 邱祥雲; 崔永麗; 方亮; 孫世剛, “鋰離子電池的電化學阻抗譜分析”, China Academic Journal Electronic Publishing House, Vol.22, No.6, 2010.
[65]M. Takahashi,; S.-I. Tobishima,; K. Takei,; Y. Sakurai, “Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries”, Solid State Ionics, vol.148, pp.283-289, 2002.
[66]陳昱光, “鋰離子電池陰極材料熱穩定性探討”, 國立中央大學化學系碩士論文, 2008.
指導教授 諸柏仁(Peter Po-Jen Chu) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明