博碩士論文 101223040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.149.255.69
姓名 郭妍均(Yen-chun Kuo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用掃描式電子穿隧顯微鏡探討陰離子及pH值對電沉積鈷、鎳於鉑(111)電極上之影響
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用掃描式電子穿隧顯微鏡( in situ scanning tunneling microscopy,in situ-STM )和循環伏安法( cyclic voltammetry,CV )探討兩個主題:不同陰離子及pH值對電沉積鈷、鎳於鉑(111)電極上之影響。第一部分為單純硫酸鉀溶液下( 0.1 M K2SO4 + 1 mM H2SO4 + 10 mM CoSO4, pH3 ),在-0.35V氫氧根離子伴隨著鈷的沉積而形成蜂窩狀結構,將電位往負至-0.6V時,發現此結構消失,推測OH-被還原而鈷原子轉為不規則排列。在有氯離子時,鈷和氯離子共同吸附而形成無序的吸附層,但含溴離子下,則與鈷形成不同的蜂窩狀結構。陰離子和鈷共吸附強度為:Br- > Cl- > OH-。
於含溴離子硫酸鉀溶液中,鈷的沉積效率最佳,氯離子溶液次之,純硫酸鉀溶液中效率最差。在單純硫酸鉀溶液中,在5層原子厚度內鈷以二維層狀方式沉積於鉑(111)電極上,形成有規則高低起伏波浪狀結構,由這些規則結構可推算出鈷原子的間距由0.257 nm減少至0.254 nm。在第六層之後,螺旋狀的島狀結構開始出現。在純硫酸鉀溶液中,島狀物有清楚的三角形形狀,而在氯離子的存在下,則造成不規則的島狀特徵。若溶液中含溴離子,鈷從第二層開始就以三維(Volmer-Weber mode)的方式成長。
第二部分著重於pH值對鈷鎳沉積效率的影響,探討( pH2、3及6 )之硫酸鉀溶液中,電沉積鈷、鎳於鉑(111)電極上。鈷的沉積效率於pH6下最佳,可達72.5 %,而效率最差為pH2溶液下;而鎳的沉積效率:pH3 > pH2,因於酸性溶液中,氫離子濃度較高,所消耗的電荷較多用於氫離子還原成氫氣,而不利於鈷及鎳的沉積。在pH2中,第一層鈷及鎳是以fractal-like growth中的extended fractal growth的方式沉積33;而於pH3下,第一層鈷及鎳皆會與氫氧根離子共吸附在鉑(111)電極上,形成一蜂窩狀結構,當此結構於較負電位時,由於氫氧根離子會脫附,因而造成此結構轉為不規則排列;在pH6硫酸鉀溶液中,第一層鈷膜也會形成蜂窩狀結構,但會有少部分不規則區塊。
在沉積多層的部分,於pH2及3之硫酸鉀溶液中,5層以內鈷膜及鎳膜皆是以二維層狀方式沉積於鉑(111)電極上,且皆有moiré pattern結構,當第六層則轉為三維島狀的形式成長,此成長模式皆為SK mode;而於pH6下,鈷的成長模式為VW mode。由STM結果顯示,於pH3溶液下,鈷原子的沉積方式是以FCC堆疊;而於pH6下,鈷原子則是傾向HCP的方式堆疊。此結果與文獻結果相符合36,鈷的沉積在pH值較低下會傾向於FCC;而於較高pH值下,則會以HCP的方式堆疊。
摘要(英) In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were used to examine two topics: Effects of anions and pH on the electrodeposition of cobalt on Pt(111) electrode. Part I was the electrodeposition of cobalt onto a Pt(111) electrode in 0.1 M K2SO4 + 1 mM H2SO4 (pH3). Cobalt deposited tended to nucleate uniformly on the terrace and accompanied by hydroxide adsorption, then assembled into ordered honeycomb-like structured film at -0.34 V( vs. Ag/AgCl ). While the potential was shifted to -0.6 V, hydroxide was reduced and local ordered moiré patterns were displaced by rough patches immediately. Chloride ions and cobalt were coadsorbed to form a disordered bilayer. Cobalt monolayer accompanied with a layer of bromide to arrange in honeycomb structure. Adsorption strength of anion and cobalt: Br- > Cl- > OH-.
In potassium sulfate solution containing chloride and bromide, the deposition efficiency of cobalt was highest in presence of bromide, followed by chloride, and potassium sulfate yielded the worst efficiency. For the first five layers of cobalt, deposition proceeded mainly in a two-dimensional mode, producing a regular moiré pattern in potassium sulfate solution. The in-plane interatomic spacing between cobalt atoms decreased gradually from 0.257 to 0.254 nm. Spiral islands were observed starting from the sixth layer, yielding well-defined, stacked triangules defined by <110> aligned steps. By contrast, islands with irregular shapes were found in the presence of chloride. In the presence of bromide, cobalt was deposited in three-dimensional (Volmer-Weber mode).
Electrodeposition of cobalt onto a Pt(111) electrode in potassium sulfate solutions made of unlike pH. Deposition efficiency reached as high as (72.5 %) in pH6 solution, by opposed to 8.0 % found in pH2 solution. Similarly, nickel was deposited more efficiently in pH3 than pH2 solution. Due to the higher proton concentration in acidic solution, charge wasw mostly consumed by protons to yield hydrogen, leading to lower reduce deposition efficiency of nickel and cobalt. It was observed that the first layer of cobalt or nickel grew in fractals and in extended fractal at pH2. In addition, the deposition of cobalt or nickel accompanied by hydroxide adsorption into ordered honeycomb-like structure at pH3 solution. At more negative potential, hydroxide was desorbed, producing partially ordered honeycomb-like structure. The dgree of ordering of honeycomb-like structure was poorer in pH6 electrolyte.
Multilayer deposition of cobalt or nickel in pH2 and pH3 potassium sulfate solution occurred in two-dimensional, producing regular moiré patterns until the sixth layer, where three-dimensional islands were imaged by the STM. However, the deposition at pH6 followed the VW mode. Cobolt deposit could pack in fcc at pH2, whereas it adopted hcp stacking at higher pH(~6) sulfate solution.
關鍵字(中) ★ 掃描穿隧式電子顯微鏡
★ 鈷
★ 鎳
關鍵字(英) ★ STM
★ Cobalt
★ Nickel
★ electrodeposition
論文目次 摘要i
ABSTRACTiii
誌謝v
目錄vi
圖目錄ix
表目錄xvii
第一章 緒論
1-1 磁性物質1
1-1-1 磁性物質的種類1
1-1-2 鐵磁性物質的特性3
1-1-3 巨磁電阻效應及穿隧式磁阻效應.3
1-1-4 磁性超薄膜4
1-2 薄膜成長理論5
1-2-1 薄膜成長模式5
1-2-2 影響薄膜成長的因素6
1-2-3 晶格匹配度6
1-3 陰離子在金屬表面的化學吸附7
1-4 系統物性介紹8
1-4-1 鈷、鎳及銅之物理性質比較8
1-4-2 酸性溶液中的標準電極電位8
1-5 文獻回顧及研究動機9
1-5-1 磁性鈷薄膜的研究9
1-5-2 磁性鎳薄膜的研究10
1-5-3 研究動機11
第二章 實驗部分
2-1 藥品部分22
2-1-1 藥品22
2-1-2 鈷鎳之鍍液22
2-2 氣體部分23
2-3 金屬部分23
2-4 儀器設備23
2-5 實驗步驟24
第三章 陰離子於PH 3硫酸鉀溶液中對鈷沉積於鉑(111)電極上的影響
3-1 鈷於鉑(111)電極上電沉積的探討29
3-1-1 鈷沉積於鉑(111)電極上之循環伏安圖29
3-1-2 鈷沉積於鉑(111)電極上之STM圖30
3-2 含氯離子溶液中鈷於鉑(111)電極上的電沉積33
3-2-1 循環伏安圖33
3-2-2 STM圖34
3-3 含溴離子溶液中鈷於鉑(111)電極上的電沉積35
3-3-1 循環伏安圖35
3-3-2 STM圖35
3-4 結論37
3-4-1 不同陰離子對單層鈷沉積於鉑(111)電極上的影響37
3-4-2 不同陰離子對多層鈷沉積於鉑(111)電極上的影響37
第四章 不同PH值之硫酸鉀溶液對鈷、鎳沉積於鉑(111)電極上的影響
4-1 不同pH值之硫酸鉀溶液對鈷沉積在鉑(111)電極上的探討59
4-1-1 pH2下鈷沉積之電化學及STM結果 59
4-1-2 pH6下鈷沉積之電化學及STM結果 61
4-1-3 pH3下,含0.01 M硼酸中鈷沉積於鉑(111)電極上之電化學及STM結果 63
4-2 不同pH值之硫酸鉀溶液對鎳沉積在鉑(111)電極上的探討65
4-2-1 pH2下,鎳沉積電化學及STM結果 65
4-2-2 pH3下鎳沉積之電化學及STM結果 66
4-3 結論68
4-3-1 比較不同pH值對鈷沉積於鉑(111)電極上的影響68
4-3-2 比較不同pH值對鎳沉積於鉑(111)電極上的影響68
第五章 銅於鈷修飾之鉑(111)電極上電化學沉積
5-1 銅在pH 3硫酸鉀下於鈷薄膜修飾之鉑(111)電極上電沉積的探討98
5-1-1 銅沉積於鈷薄膜電極上之循環伏安圖98
5-1-2 銅沉積於鈷薄膜電極上之STM圖98
第六章 參考文獻103
參考文獻 (1) B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, 2nd ed., Hoboken, N.J. : Wiley-IEEE Press, 2009,10-21
(2) 張慶瑞、蘇又新. 巨磁阻物理之歷史與展望—從2007 年物理諾貝爾獎談起. 物理雙月刊 2008, 30, 110-115
(3) 吳啟彬、徐斌睿、林敏聰. 自旋電子學之應用-自旋極化掃瞄式穿隧電子顯微鏡簡介. 物理雙月刊 2008, 30, 168-174
(4) P. Allongue, F. Maroun, Electrodeposited magnetic layers in the ultrathin limit. MRS bulletin, 2010, 35, 761-770.
(5) Z. Zhang, M.G. Lagally, Atomistic Processes in the Early Stages of Thin-Film Growth. Science, 1997, 276, 377-383
(6) J.A.C. Bland, B. Heinrich, Ultrathin Mag. StructureⅠ, Berlin Heidelberg, 1994, 91-121
(7) C. Kittel, Introduction of Solid State Physics, 7th ed., New York : Wiley, 1996
(8) A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York : Wiley, 2001
(9) B. Voigtländer, G. Meyer, N.M. Amer, Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy. Physical Review B, 1991, 44, 10354-10357
(10) J. de la Figuera, J. E. Prieto, C. Ocal, R. Miranda, Scanning-tunneling-microscopy study of the growth of cobalt on Cu(111). Physical Review B, 1993, 47, 13043-13046
(11) P. Grütter, U.T. Dürig, Growth of vapor-deposited cobalt films on Pt (111) studied by scanning tunneling microscopy. Physical Review B, 1994, 49, 2021-2029
(12) J.S. Tsay, C.S. Shern, Structure evolution for annealing Co ultrathin films on Pt(111). Surface science, 1998, 396, 313-318
(13) J. E. Prieto, J. de la Figuera, R. Miranda, Surface energetics in a heteroepitaxial model system: Co/Cu(111). Physical Review B, 2000, 62, 2126-2133
(14) E. Lundgren, B. Stanka, M. Schmid, and P. Varga, Thin films of Co on Pt(111): Strain relaxation and growth . Physical Review B, 2000, 62, 2843-2851
(15) R Deák, Z Néda, Kinetic Monte Carlo approach for triangular-shaped Pt islands on Pt(111) surfaces. Phys. Status Solidi B, 2012, 249, 1709-1716
(16) A. Gündel, L. Cagnon, C. Gomes, A. Morrone, J. Schmidt, P. Allongue, In-situ magnetic measurements of electrodeposited ultrathin Co, Ni and Fe/Au(111) layers. Physical Chemistry Chemical Physics, 2001, 3, 3330-3335
(17) C.S. Shern , J.S. Tsay, H.Y. Her, Y.E. Wu, R.H. Chen, Response and enhancement of surface magneto-optic Kerr effect for Co–Pt(111) ultrathin films and surface alloy. Surface Science, 1999, 429, L497-L502
(18) L. Cagnon, T. Devolder, R. Cortes, A. Morrone, J. E. Schmidt, C. Chappert, P. Allongue1, Enhanced interface perpendicular magnetic anisotropy in electrodeposited Co/Au(111) layers. Physical Review B, 2001, 63, 104419
(19) M. Kleinert, H. F. Waibel, G.E. Engelmann, H. Martin, D.M. Kolb, Co deposition on Au(111) and Au(100) electrodes: an in situ STM study. Electrochimica Acta, 2001, 46, 3129-3136
(20) P. Allongue, L. Cagnon, C. Gomes, A. Gündel, V. Costa, Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surface Science, 2004, 557, 41-56
(21) M. Mulazzia, S. Stanescu, J. Fujii, I. Vobornik, C. Boeglin, R. Belkhou, G. Rossi, A. Barbier, Structural and electronic properties of thin Ni layers on Cu(111) as investigated by ARPES, STM and GIXD. Surface Science, 2006, 600, 3938-3942
(22) Y.C. Kuo, P.Y. Yen, W. Chen, S. Chen, S.L. Yau, In situ scanning tunneling microscopy study of cobalt thin film electrodeposited on Pt(111) electrode. Electrochimica Acta, 2013, 112, 831-837
(23) W. Chen, P.Y. Yen, Y. Kuo, S. Chen, S.L. Yau, Epitaxial Electrodeposition of Nickel on Pt(111) Electrode. Journal of Physical Chemistry C, 2012, 116, 21343-21349
(24) B. Braunschweig, W. Daum, Superstructures and Order−Disorder Transition of Sulfate Adlayers on Pt(111) in Sulfuric Acid Solution. Langmuir, 2009, 25, 11112-11120
(25) N. Pradhan, T. Subbaiah, S.C. Das, UN Dash, Effect of zinc on the electrocrystallization of cobalt. Journal of Applied Electrochemistry, 1997, 27, 713-719
(26) M. De Santis, A. Buchsbaum, P. Varga, M. Schmid, Growth of ultrathin cobalt oxide films on Pt(111). Physical Review B, 2011, 84, 125430
(27) M. Ritter, W. Ranke, W. Weiss, Growth and structure of ultrathin FeO films on Pt (111) studied by STM and LEED. Physical Review B, 1998, 57, 7240
(28) H.C. Galloway, J.J. Benítez, M. Salmeronb, The structure of monolayer films of FeO on Pt(111). Surface Science, 1993, 298, 127-133
(29) L. Cagnon, A. Gundel, T. Devolder, A. Morrone, C. Chappert, J.E. Schmidt, P. Allongue, Anion effect in Co/Au(111) electrodeposition: structure and magnetic behavior. Applied Surface Science, 2000, 164, 22-28
(30) O. E. Kongstein, G. M. Haarberg, J. Thonstad, Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature. Journal of Applied Electrochemistry, 2007, 37, 669-674
(31) M.I. Jeffrey, W.L. Choo, P.L. Breuer, The effect of additives and impurities on the cobalt electrowinning process . Minerals engineering, 2000, 13, 1231-1241
(32) D. Grujicic, B. Pesic, Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions. Electrochimica acta, 2004, 49, 4719-4732
(33) A.M. Bittner, J. Wintterlin, B. Beran, G. Ertl, Bromine adsorption on Pt(111), (100), and (110) — an STM study in air and in electrolyte. Surface science, 1995, 20, 291-299
(34) J.T. Matsushima, F. Trivinho-Strixino, E.C. Pereira, Investigation of cobalt deposition using the electrochemical quartz crystal microbalance. Electrochimica acta, 2006, 51, 1960-1966
(35) U. Käsberger, P. Jakob, Growth and thermal evolution of submonolayer Pt films on Ru(0001) studied by STM. Surface science, 2003, 540, 76-88
(36) V. Lazarescu, J. Clavilier, pH effects on the potentiodynamic behavior of the Pt(111) electrode in acidified NaClO4 solutions. Electrochimica acta, 1998, 44, 931-941
(37) T. Cohen-Hyams, W.D. Kaplan, J. Yahalom, Structure of Electrodeposited Cobalt. Electrochemical and Solid-State Letters, 2002, 5, C75-C78
(38) S. Nakahara, S. Mahajan, The influence of solution pH on microstructure of electrodeposited cobalt. Journal of the Electrochemical Society, 1980, 127, 283-288
(39) A.N. Correia, S.A.S. Machado, L.A. Avaca, Studies of the hydrogen evolution reaction on smooth Co and electrodeposited Ni–Co ultramicroelectrodes. Electrochemistry communications, 1999, 1, 600-604
(40) JE Prieto, C Rath, S Müller, R Miranda, K Heinz, A structural analysis of the Co (0001) surface and the early stages of the epitaxial growth of Cu on it. Surface science, 1998, 401, 248–260
指導教授 姚學麟(Shueh-lin Yau) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明