博碩士論文 101223045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.226.76.216
姓名 陳世芳(Shih-Fang Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 銅(I)催化碳-氮偶合反應之研究
相關論文
★ 探討有機鹼DBU與金屬salen錯合物在二氧化碳對環氧化物的環狀加成反應中的角色★ 磷橋異核雙金屬錯合物的配位子移轉
★ 含有碳烯化合物之鈀金屬異相觸媒催化碳碳鍵生成反應之研究★ 銅(I)催化的碳硫偶合反應中間產物研究
★ 銅金屬催化碳-氧偶合反應路徑★ 鈾鍺酸鹽之合成與結構鑑定
★ 稀土元素配位聚合物和亞磷酸鹽之合成、晶體結構與發光性質研究★ 含有機模板的錫鍺酸鹽與錫矽酸鹽之合成與其結構鑑定
★ 銅催化碳硫偶合反應之陽離子效應研究★ 銅錯合物催化碳-氮偶合反應之研究
★ 探討β芳香醚類斷裂之研究★ 銅(I)催化碳-氮偶合反應之研究
★ 鋰鋁鈦磷酸鹽的合成、晶體結構及性質研究★ 鋰鐵鈦磷酸鹽之晶體結構與離子導電度性質研究
★ 鈦磷酸鹽與鈦矽酸鹽之合成、晶體結構與 性質研究★ 有機-無機混成之金屬磷酸鹽/亞磷酸鹽骨架化合物的合成與性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 以二苯胺類(HNPh2)/鹵化苯/碘化銅/1,10-二氮雜菲(Phen)/叔丁醇鹼(MOtBu, M=Li, Na, K)進行銅(I)催化碳-氮偶合反應系統已被研究多年,但是對於其銅(I)催化錯合物還是有所爭論,主要以[Phen-Cu-NPh2]與[Cu(NPh2)2]-為主。為了釐清此爭論,首先我們移去Phen這項變因,研究銅(I)如何進行催化。由DFT理論計算的結果指出,質子轉移(proton transfer, PT)平衡: MOtBu + HNPh2 ⇌ MNPh2 + HOtBu , GPT,影響了MNPh2在反應系統中的濃度,進而影響反應速率的快慢。因此我們直接使用MNPh2/鹵化苯/碘化銅進行實驗,以移去平衡所產生的干擾,其產率為LiNPh2 > NaNPh2 > KNPh2,這與我們所預測的催化物種M[Cu(NPh2)2],其氧化加成反應活化能之結果相符合。另一方面,計算配位基置換(ligand exchange, LC)平衡: [Phen-Cu-NPh2] + MNPh2 ⇌ M[Cu(NPh2)2] + Phen , GLC,其結果GLC = -7.02 ~ -11.12 kcal/mol,表示Phen存在時,依然是以M[Cu(NPh2)2]為主要的存在物種。並且從MNPh2/鹵化苯/碘化銅/Phen催化實驗,Phen的加入反而會造成產率的下降,打破Phen會增加反應性的迷思。
摘要(英) The C-N cross coupling catalyzed by NPh2H/ArI/CuI/1,10-Phenan- throline (phen)/MOtBu (M=Li, Na, K) system has been studied for many years. But the argument of Cu(I)-complex catalyst, which are [phen-Cu-NPh2] and M[Cu(NPh2)2], were still not stop. In order to clarify this argument, first we removed Phen to study Cu(I)-catalyzed mechanism. By density functional theory (DFT) studies, the proton transfer (PT) equilibrium, MOtBu + HNPh2 ⇌ MNPh2 + HOtBu, affects MNPh2 concentration, further the reaction rate is affected. Therefore, we directly used MNPh2/ArI/CuI system to remove the PT’s interferences, the result that the order of yield is LiNPh2 > NaNPh2 > KNPh2 corresponds with the oxidation-addition-activation-energy of M[Cu(NPh2)2], which were predicted our calculations. On the other hand, the calculated ligand exchange (LC) equilibrium, [Phen-Cu-NPh2] + MNPh2 ⇌ M[Cu(NPh2)2] + Phen, GLC, the results are GLC = -7.02 ~ -11.12 kcal/mol, which means that M[Cu(NPh2)2] is main species even if Phen is present. According to adding Phen accompanied decreasing yield in MNPh2/ArI/CuI/Phen experiments, this results breaking the myth of Phen enhanced reactivity.
關鍵字(中) ★ 碳-氮偶合反應
★ 銅一價催化
★ 銅一價
★ 1,10-二氮雜菲
關鍵字(英)
論文目次 摘要 IV
Abstract V
致謝 VI
目錄 VIII
圖目錄 XI
表目錄 XII
附錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 碳-氮鍵偶合反應之背景及簡介 3
1-2-1 起源:Ullmann-Goldberg偶合反應介紹 3
1-2-2 銅催化碳-氮偶合反應 4
1-2-3 銅催化碳-氮偶合反應一般反應機制 6
1-2-4 常見之碳-氮偶合反應系統 8
1-2-5 深入探討銅(I)催化碳-氮偶合反應機制 10
1-3 含碳雜環碳烯(NHC)背景及簡介 13
1-3-1 含氮雜環碳烯 (NHC) 金屬化 15
1-4 研究方向 16
第二章 理論計算 18
2-1 HF理論方法 18
2-2 Density Functional Theory理論方法 19
2-3 基底 21
2-4 分裂(split)基底 22
2-5 極化函數(polarization function) 23
2-6 擴散函數(diffuse function) 24
2-7 限定自洽場與非限定自洽場 24
2-8 文獻回顧 26
第三章 實驗 30
3-1 實驗藥品 30
3-1-1 溶劑 30
3-1-2 藥品 30
3-1-3 實驗氣體 31
3-2 實驗儀器 32
3-2-1 手套箱 (Dry box) 32
3-2-2 氣相層析儀 (GC) 32
3-2-3 氣相層析質譜儀(GC-MS) 32
3-2-4 核磁共振儀 (Nuclear magnetic resonance) 33
3-2-5 元素分析儀 (EA) 33
3-3實驗步驟-合成 34
3-3-1 合成IMes.HCl[31] 34
3-3-2 合成IPr.HCl[31] 35
3-3-3 合成IMes-Cu-Cl[31] 35
3-3-4 合成IPr-Cu-Cl[31] 36
3-3-5 合成1,3-Dimethylimidazolium iodide (簡稱:Met)[32] 36
3-3-6 合成LiNPh2[33] 36
3-3-7 合成NaNPh2[34] 37
3-3-8 合成KNPh2[35] 37
3-3-9 合成IMes-Cu-NPh2 38
3-4一般實驗步驟 39
3-4-1 1,10-二氮雜菲對銅催化碳-氮偶合之影響(叔丁醇鋰系統) 39
3-4-2 1,10-二氮雜菲對銅催化碳-氮偶合之影響(叔丁醇納系統) 41
3-4-3 1,10-二氮雜菲對銅催化碳-氮偶合之影響(叔丁醇鉀系統) 43
3-4-4 銅金屬含氮雜環碳烯錯合物對碳-氮偶合反應之影響 44
3-4-5 MNPh2之碳-氮偶合反應 48
3-5 理論計算實驗步驟 52
第四章 結果與討論 53
4-1 1,10-二氮雜菲對銅催化碳-氮偶合之影響 53
4-2 銅(I)催化碳-氮偶合反應機制探討 57
4-3 MNPh2為起始物之銅(I)催化碳-氮偶合反應 63
4-4 配位基1,10-二氮雜菲與含氮雜環碳烯對於銅(I)催化碳-氮偶合反應之影響 67
4-5 含碳雜環碳烯配位基之討論 73
第五章 結論 75
第六章 參考文獻 76
第七章 附錄 79
參考文獻 [1] H. S. O. Chan, S. C. Ng, L. S. Leong, K. L. Tan, Synth. Met. 1995, 68, 199-205.
[2] Q. Fang, B. Xu, B. Jiang, H. Fu, W. Zhu, X. Jiang, Z. Zhang, Synth. Met. 2005, 155, 206-210.
[3] a) I. Goldberg, Ber. Dtsch. Chem. Ges. 1906, 39, 1691-1692; b) F. Ullmann, Ber. Dtsch. Chem. Ges. 1904, 37, 853-854; c) F. Ullmann, J. Bielecki, Ber. Dtsch. Chem. Ges. 1901, 34, 2174-2185; d) F. Ullmann, Ber. Dtsch. Chem. Ges. 1903, 36, 2382-2384.
[4] D. V. Davydov, I. P. Beletskaya, Russ. Chem. Bull. 1995, 44, 1141-1141.
[5] a) M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 7217-7218; b) A. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. Int. Ed. Engl. 1995, 34, 1348-1350; c) J. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 36, 3609-3612; d) J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 1996, 61, 1133-1135; e) J. P. Wolfe, S. Wagaw, S. L. Buchwald, J. Am. Chem. Soc. 1996, 118, 7215-7216.
[6] a) I. P. Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004, 248, 2337-2364; b) S. V. Ley, A. W. Thomas, Angew Chem Int Ed Engl 2003, 42, 5400-5449; c) D. W. Ma, Q. A. Cai, Accounts Chem. Res. 2008, 41, 1450-1460; d) F. Monnier, M. Taillefer, Angew Chem Int Ed Engl 2008, 47, 3096-3099; e) F. Monnier, M. Taillefer, Angew Chem Int Ed Engl 2009, 48, 6954-6971.
[7] a) S. Ge, R. A. Green, J. F. Hartwig, J Am Chem Soc 2014, 136, 1617-1627; b) N. H. Park, G. Teverovskiy, S. L. Buchwald, Org Lett 2014, 16, 220-223.
[8] a) S. L. Zhang, L. Liu, Y. Fu, Q. X. Guo, Organometallics 2007, 26, 4546-4554; b) J. W. Tye, Z. Weng, A. M. Johns, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 9971-9983; c) H. Kaddouri, V. Vicente, A. Ouali, F. Ouazzani, M. Taillefer, Angew Chem Int Ed Engl 2009, 48, 333-336; d) R. Giri, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 15860-15863.
[9] a) M. R. Biscoe, B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 16707-16707; b) C. Reddy, V. Reddy, S. Urgaonkar, J. G. Verkade, Org. Lett. 2005, 7, 4427-4430; c) I. Ferreira, M. Queiroz, G. Kirsch, Tetrahedron 2003, 59, 975-981; d) J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaughnessy, L. M. Alcazar-Roman, J. Org. Chem. 1999, 64, 5575-5580.
[10] G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054-3131.
[11] I. P. Beletskaya, A. V. Cheprakov, Organometallics 2012, 31, 7753-7808.
[12] G. O. Jones, P. Liu, K. N. Houk, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 6205-6213.
[13] R. K. Gujadhur, C. G. Bates, D. Venkataraman, Org. Lett. 2001, 3, 4315-4317.
[14] Y.-H. Liu, C. Chen, L.-M. Yang, Tetrahedron Lett. 2006, 47, 9275-9278.
[15] K.-T. Wong, S.-Y. Ku, F.-W. Yen, Tetrahedron Lett. 2007, 48, 5051-5054.
[16] N. S. Nandurkar, M. J. Bhanushali, M. D. Bhor, B. M. Bhanage, Tetrahedron Lett. 2007, 48, 6573-6576.
[17] a) C. K. Tseng, C. R. Lee, M. C. Tseng, C. C. Han, S. G. Shyu, Dalton Trans. 2014, 43, 7020-7027; b) C. K. Tseng, M. C. Tseng, C. C. Han, S. G. Shyu, Chem Commun 2011, 47, 6686-6688; c) C. K. Tseng, C. R. Lee, C. C. Han, S. G. Shyu, Chem. Eur. J. 2011, 17, 2716-2723.
[18] H. W. WANZLICX, Angew Chem Int Ed Engl 1962, 1, 75-80.
[19] H. W. Wanzlick, H. J. Schonherr, Angew Chem Int Ed Engl 1968, 7.
[20] A. J. A. III., R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.
[21] I. Anthony J. Arduengo, H. V. R. Dias, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1992, 114, 5530.
[22] Karl Öfele, Wolfgang A. Herrmann, Dimitrios Mihalios, M. Elison, E. Herdtweck, W. Scherer, J. Mink, J. Organomet. Chem. 1993, 459.
[23] B. Liu, X. Liu, C. Chen, C. Chen, W. Chen, Organometallics 2012, 31, 282-288.
[24] a) W. A. Nugent, R. L. Harlow, J. Am. Chem. Soc. 1994, 116, 6142-6148; b) C. Roothaan, Rev. Mod. Phys. 1951, 23, 69-89.
[25] R. McWeeny, J. Chem. Phys 1968, 49, 4852.
[26] J. C. Slater, Quantum Theory of Molecules and Solids. Vol. 4: The Self-consistent Field for Molecules and Solids, McGraw-Hill, 1974.
[27] a) D. R. Z. Salahub, M. C., The Challenge of d and f Electrons, ACS, Washington, D.C., 1989; b) R. G. Y. Parr, W., Density-functional theory of atoms and molecules, Oxford Univ. Press, Oxford, 1989; c) W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133-A1138; d) P. Hohenberg, Phys. Rev. 1964, 136, B864-B871.
[28] a) A. D. Becke, J. Chem. Phys 1993, 98, 5648; b) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
[29] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
[30] H. Z. Yu, Y. Y. Jiang, Y. Fu, L. Liu, J. Am. Chem. Soc. 2010, 132, 18078-18091.
[31] C. A. Citadelle, E. Le Nouy, F. Bisaro, A. M. Slawin, C. S. Cazin, Dalton Trans. 2010, 39, 4489-4491.
[32] I. Dinarès, C. Garcia de Miguel, A. Ibáñez, N. Mesquida, E. Alcalde, Green Chem. 2009, 11, 1507.
[33] M. A. Antunes, M. Dias, B. Monteiro, A. Domingos, I. C. Santos, N. Marques, Dalton Trans. 2006, 3368-3374.
[34] Jilles J. H. Edema, Auke Meetsma, S. Gambarotta, J. Chem. Soc., Chem. Commun. 1990, 951-953.
[35] H. Yin, A. J. Lewis, U. J. Williams, P. J. Carroll, E. J. Schelter, Chem. Sci. 2013, 4, 798.
[36] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; c) K. Kim, K. D. Jordan, J. Phys. Chem. 1994, 98, 10089; d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
[37] C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert, L. S. Sunderlin, J. Phys. Chem. A 2001, 105, 8111-8116.
[38] a) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001; b) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.
[39] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Revision C.01 ed., Gaussian, Inc., Wallingford CT, 2010.
[40] a) R. A. Altman, S. L. Buchwald, Org. Lett. 2006, 8, 2779-2782; b) A. A. Kelkar, N. M. Patil, R. V. Chaudhari, Tetrahedron Lett. 2002, 43, 7143-7146; c) A. Kiyomori, J.-F. Marcoux, S. L. Buchwald, Tetrahedron Lett. 1999, 40, 2657-2660; d) H. B. Goodbrand, N. X. Hu, J. Org. Chem. 1999, 64, 670-674.
[41] E. Shirakawa, K. Itoh, T. Higashino, T. Hayashi, J. Am. Chem. Soc. 2010, 132, 15537-15539.
[42] W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. A. He, H. B. Wang, F. Y. Kwong, A. W. Lei, J. Am. Chem. Soc. 2010, 132, 16737-16740.
[43] T. Tsuda, M. Miwa, T. Saegusa, J. Org. Chem. 1979, 44, 3734-3736.
指導教授 李光華、徐新光 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明