博碩士論文 101223048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.206.48.142
姓名 何嗣元(Sze-Yuan Ho)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用
★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用
★ 中孔洞碳材於高效能鋰離子電池之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文分為兩大部分,第一部分是合成出兩種不同特性之高分子單體(MG、PEG122),依不同重量比混摻,並改變氧鋰比,合成出一新型混摻型有機無機固態高分子電解質。接著探討鋰鹽濃度對於高分子電解質的性質影響及鋰離子與高分子鏈段的作用情形:利用熱重分析儀 (TGA) 觀察其熱穩定性;以微差掃描熱卡計 (DSC) 研究高分子鏈段結晶情形;以傅立葉紅外線吸收光譜儀 (FTIR) 對其結構作鑑定並分析鋰鹽解離程度;以交流阻抗分析儀 (AC Impedance) 測量離子導電度、電化學穩定性及鋰離子遷移係數;以掃描式電子顯微鏡 (SEM) 分析其表面形態;以固態核磁共振光譜儀 (SSNMR) 之13C CP MAS進行結構鑑定,並利用許多NMR技術如1H-13C 2D WISE、7Li NMR譜寬量測等方法了解鋰離子與高分子鏈段運動性之間的動力學分析研究。藉由分析結果發現其導電度隨高分子鏈段運動性增加而上升,室溫下最佳導電度可達1.15 × 10-4 Scm-1。
第二部分則是將第一部分所合成之高分子單體MG、PEG122與交聯劑PVdF-HFP依不同比例混合,並吸附市售有機液態電解液 (1 M LiPF6 EC/DEC, 1:1 v/v),製備成膠態高分子電解質,期望能夠提升離子導電度並應用於鋰離子電池當中。接著針對其電解液吸附情形作澎潤比測試;以交流阻抗分析儀 (AC Impedance) 測量離子導電度與電化學穩定性,得知此膠態高分子電解質於室溫下最佳導電度可達到6.95 × 10-3 S cm-1,且可承受到約4.1 V之氧化分解電壓;最後進一步組裝成硬幣型 2032 電池,對其電池充放電性能作探討。
摘要(英) A new organic-inorganic hybrid electrolyte was synthesized by bridging two different organic-inorganic groups via silane condensation. Two precursors were formed by reacting (i) tri-block co-polymer poly(propylene glycol)-block -poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), poly(ethylene glycol diglycidyl ether and (3-glycidoxypropyl)-trimethoxysilane, and (ii) oligo(oxyalkylene)-amines (M-2070) with (3-glycidyloxypropyl)-trimethoxysilane. Both the precursors were coupled via silane condensation. Final hybrid electrolytes were obtained by varying the weight percentages of both the precursors and [O]/[Li] ratios, and characterized by different techniques.
The structure and performance of the polymer electrolytes for lithium ion batteries use, including thermal stability, ionic conductivity, salt dissolvability, surface morphology, electrochemical stability, were studied by thermogravi-metric analyzer (TGA), AC impedance, Fourior transform infaraed spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron spectroscopy (SEM), 13C cross-polarization magic-angle spinning (CPMAS). The Vogel-Tamman-Fulcher (VTF)-like conductivity behavior is observed in the present solid polymer electrolyte (SPE) with a maximum ionic conductivity is 1.15×10-4 Scm-1 at 30°C. Multinuclear NMR techniques are used to provide a microscopic view for the specific interaction between the polymer chains and Li+ cations and their dynamic behaviors. The results of 2D 1H-13C wide-line separation (WISE) and 7Li static line NMR width measurements reveal that the mobility of the 7Li cations are strongly related to a dynamic environment created by the polymer chains motion in the amorphous phase.
Then the swelling ratio and the ionic conductivity of the electrolyte membranes are measured with comercial liquid electrolyte solutions, the gel polymer electrolytes (GPEs) represents the highest ionic conductivity as 6.95 × 10-3 Scm-1 at 30°C and with sufficient electrochemical stability up to 4.1 V. Hence, it can be concluded that this new hybrid polymer system is suitable for use as a GPE in rechargeable lithium batteries.
關鍵字(中) ★ 鋰離子電池
★ 固態高分子電解質
關鍵字(英) ★ lithium ion battery
★ solid polymer electrolyte
論文目次 第一章 前言 1
1-1. 鋰離子電池簡介 1
1-2. 高分子電解質 4
1-2-1. 固態高分子電解質 6
1-2-2. 膠態高分子電解質 14
1-3. 鋰離子鹽類 19
第二章 研究規劃 26
2-1. 研究動機 26
2-1-1. 具環氧樹脂之高分子 26
2-1-2. 有機矽高分子 29
2-2. 研究方向 30
2-3. 研究架構 31
第三章 實驗部分與原理 32
3-1. 實驗藥品 32
3-2. 儀器設備 33
3-3. 高分子電解質膜製備 34
3-3-1. 固態高分子電解質製備 34
3-3-2. 膠態高分子電解質製備 37
3-3-3. 硬幣型 2032 型電池組裝 39
3-4. 儀器分析原理 40
3-4-1. 熱重量分析儀 (Thermo Gravimetric Analyzer, TGA) 40
3-4-2. 微差掃描熱卡計 (Differential Scanning Calorimeter, DSC) 41
3-4-3. 傅立葉紅外線吸收光譜儀 (FTIR) 43
3-4-4. 交流阻抗分析儀 (AC Impedance) 44
3-4-5. 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 47
3-4-6. 固態核磁共振 (Solid State NMR) 48
3-4-7. 線性掃描電位測試 59
3-4-8. 鋰離子遷移數目 (transference number) 測試 60
3-4-9. 電池性能測試 62
第四章 結果與討論 63
4-1. 固態高分子電解質 MG-PEG122-Y-X 63
4-1-1. 混摻型高分子主體 64
4-1-2. 熱重量分析 67
4-1-3. 微差式掃描熱卡計分析 69
4-1-4. 紅外線吸收光譜之鑑定分析 72
4-1-5. 掃描式電子顯微鏡之表面分析 77
4-1-6. 交流阻抗儀之離子導電度測試 80
4-1-7. 固態核磁共振光譜儀分析 85
4-1-8. 鋰離子遷移數目測試 105
4-1-9. 線性掃描伏安法 108
4-2. 膠態高分子電解質 MG-PEG122-ABC 110
4-2-1. 電解質吸附之澎潤比測試 111
4-2-2. 交流阻抗儀之離子導電度測試 114
4-2-3. 線性掃描伏安法 117
4-2-4. 電池性能測試 118
第五章 結論 124
參考文獻 126
參考文獻 (1) 曾柏尹, 彭國光, 周裕福, et al., 工業材料, 2003, 197, 110-123.
(2) J. Hajek, French Patent, 1949, 8, 10.
(3) B. Dunn, H. Kamath and J.-M. Tarascon, Science, 2011, 334, 928-935.
(4) K. Xu, Chem. Rev., 2004, 104, 4303-4418.
(5) M. Armand, Advanced Materials, 1990, 2, 278-286.
(6) B. Scrosati, F. Croce and S. Panero, Journal of Power Sources, 2001, 100, 93-100.
(7) K. Murata, S. Izuchi and Y. Yoshihisa, Electrochimica Acta, 2000, 45, 1501-1508.
(8) J. M. Parker and P. V. Wright, Polymer, 1973, 14, 589.
(9) P. V. Wright, Br. Poly. J., 1975, 7, 319.
(10) M. B. Armand and J. M. Chabagno, 1978.
(11) D. F. Shriver, J. Electrochem. Soc., 1982, 129, 1694.
(12) M. B. Armand, Solid State Ionics, 1983, 11, 91.
(13) C. W. Walker and M. Salomon, Journal of The Electrochemical Society, 1993, 140, 3409-3412.
(14) C. Berthier, W. Gorecki, M. Minier, et al., Solid State Ionics, 1983, 11, 91-95.
(15) J.-i. Yamaki, S.-i. Tobishima, K. Hayashi, et al., Journal of Power Sources, 1998, 74, 219-227.
(16) H.-L. Wang, H.-M. Kao, M. Digar, et al., Macromolecules, 2001, 34, 529.
(17) Q. Lu, J. Fang, J. Yang, et al., Journal of Membrane Science, 2013, 425–426, 105-112.
(18) S. Ü. Çelik and A. Bozkurt, Solid State Ionics, 2010, 181, 987.
(19) H. Aydın, M. Şenel, H. Erdemi, et al., J. Power Sources, 2011, 196, 1425.
(20) Y. Lin, J. Li, Y. Lai, et al., RSC Advances, 2013, 3, 10722-10730.
(21) X.-G. Sun and J. B. Kerr, Macromolecules, 2006, 39, 362.
(22) Z. Zhang, D. Sherlock, R. West, et al., Macromolecules, 2003, 36, 9176.
(23) N. Kaskhedikar, M. Burjanadze, Y. Karatas, et al., Solid State Ionics, 2006, 177, 3129.
(24) N. Kaskhedikar, M. Burjanadze, Y. Karatas, et al., Solid State Ionics, 2006, 177, 3129-3134.
(25) N. S. T. Do, D. M. Schaetzl, B. Dey, et al., The Journal of Physical Chemistry C, 2012, 116, 21216-21223.
(26) P. Aranda and E. Ruiz-Hitzky, Chemistry of Materials, 1992, 4, 1395-1403.
(27) J. Xi, S. Miao and X. Tang, Macromolecules, 2004, 37, 8592-8598.
(28) F. Croce, R. Curini, A. Martinelli, et al., The Journal of Physical Chemistry B, 1999, 103, 10632-10638.
(29) R. Prasanth, N. Shubha, H. H. Hng, et al., European Polymer Journal, 2013, 49, 307-318.
(30) G. M. Wu, S. J. Lin and C. C. Yang, Journal of Membrane Science, 2006, 275, 127-133.
(31) F. B. Dias, L. Plomp and J. B. J. Veldhuis, J. Power Sources, 2000, 88, 169.
(32) K. M. Abraham and M. Alamgir, Solid State Ionics, 1994, 70–71, Part 1, 20-26.
(33) K. M. Abraham and M. Alamgir, Solid State Ionics, 1994, 70, 20.
(34) K. Xu, Chemical Reviews, 2004, 104, 4303-4418.
(35) J. Y. Song, Y. Y. Wang and C. C. Wan, J. Power Sources, 1999, 77, 183.
(36) I. E. Kelly, J. R. Owen and B. C. H. Steele, J. Power Sources, 1985, 14, 13.
(37) S. Chintapalli and R. Frech, Solid State Ionics, 1996, 86-88, 341.
(38) M. C. Borghini, M. Mastragostino and A. Zanelli, Electrochim. Acta, 1996, 41, 2369.
(39) E. H. Cha, D. R. Macfarlane, M. Forsyth, et al., Electrochim. Acta, 2004, 50, 335.
(40) M. Watanabe, M. Kanba, K. Nagaoka, et al., J. Appl. Polym. Sc., 1982, 27, 4191.
(41) M. Watanabe, M. Kanba, K. Nagaoka, et al., J. Polym. Sci., Part B: Polym. Phys., 1983, 21, 939.
(42) H. S. Choe, B. G. Carroll, D. M. Pasquariello, et al., Chem. Mater., 1997, 9, 369.
(43) S. Takeoka, Y. Maeda, E. Tsuchida, et al., Polym. Adv. Technol., 1980, 1, 201.
(44) G. B. Appetecchi, F. Croce and B. Scrosati, Electrochim. Acta, 1995, 40, 991.
(45) A. M. Stephan, N. G. Renganathan, T. P. Kumar, et al., Solid State Ionics, 2000, 130, 123.
(46) Y. Liu, J. Y. Lee and L. Hong, Solid State Ionics, 2002, 150, 317.
(47) M. Alamgir and K. M. Abraham, J. Electrochem. Soc., 1993, 140, 96.
(48) S. Ramesh and A. K. Arof, Mater. Sci. Eng., B, 2001, 85, 11.
(49) A. M. Stephan and K. S. Nahm, Polymer, 2006, 47, 5952.
(50) E. Tsuchida, H. Ohno and K. Tsunemi, Electrochim. Acta, 1983, 28, 591.
(51) U. S. Pat., 5,296,318, 1994.
(52) F. Boudin, X. Andrieu, C. Jehoulet, et al., J. Power Sources, 1999, 81-82, 804.
(53) F. B. Dias, L. Plomp and J. B. J. Veldhuis, Journal of Power Sources, 2000, 88, 169-191.
(54) R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.
(55) D. F. Shriver, B. L. Papke, M. A. Ratner, et al., Solid State Ionics, 1981, 5, 83.
(56) J. M. Tarascon and D. Guyomard, Solid State Ionics, 1994, 69, 293-305.
(57) D. Aurbach, A. Zaban, A. Schechter, et al., Journal of The Electrochemical Society, 1995, 142, 2873-2882.
(58) G. H. Newman, R. W. Francis, L. H. Gaines, et al., Journal of The Electrochemical Society, 1980, 127, 2025-2027.
(59) K. M. Abraham, J. L. Goldman and D. L. Natwig, J. Electrochem. Soc., 1982, 129, 2404.
(60) A. A. Smagin, V. A. Matyukha and V. P. Korobtsev, J. Power Sources, 1997, 68, 326.
(61) M. Ue and S. Mori, Journal of The Electrochemical Society, 1995, 142, 2577-2581.
(62) G. Lu, N. Miura and N. Yamazoe, Journal of The Electrochemical Society, 1996, 143, L154-L155.
(63) A. Webber, J. Electrochem. Soc., 1991, 2586.
(64) H. Yang, K. Kwon, T. M. Devine, et al., J. Electrochem. Soc., 2000, 147, 4399.
(65) P. M. Blonsky, D. F. Shriver, P. Austin, et al., Journal of the American Chemical Society, 1984, 106, 6854-6855.
(66) F. Groce, F. Gerace, G. Dautzemberg, et al., Electrochimica Acta, 1994, 39, 2187-2194.
(67) A. Vallée, S. Besner and J. Prud′Homme, Electrochim. Acta, 1992, 37, 1579.
(68) J. L. Han and K. Y. Li, Journal of Applied Polymer Science, 1998, 70, 2635-2645.
(69) M. S. Wang and T. J. Pinnavaia, Chemistry of Materials, 1994, 6, 468-474.
(70) X. Peng, H. Ba, D. Chen, et al., Electrochimica Acta, 1992, 37, 1569-1572.
(71) S. Guhathakurta and K. Min, Polymer, 2010, 51, 211-221.
(72) H. F. Mark, J. Polym. Sci.: Polym. Lett. Ed., 1981, 19, 34-35.
(73) K. Pinkwart and J. Tübke, in Handbook of Battery Materials, Wiley-VCH Verlag GmbH & Co. KGaA2011, pp. 1-26.
(74) A. R. Barron, Physical Methods in Chemistry and Nano Science, Rice University2012.
(75) 盧弘捷, 碩士論文, 國立中央大學, 2003.
(76) E. R. Andrew, A. Bradbury and R. G. Eades, Nature, 1958, 182, 1659-1659.
(77) I. J. Lowe, Phys. Rev. Lett., 1959, 2, 285-287.
(78) K. Schmidt-Rohr, J. Clauss and H. W. Spiess, Macromolecules, 1992, 25, 3273-3277.
(79) 高憲明, NMR化工技術, 固態核磁共振技術於材料化學之應用與研究, 166-188.
(80) S. H. Chung, K. R. Jeffrey and J. R. Stevens, J. Chem. Phys., 1991, 94, 1803-1811.
(81) A. Abragam, The Principles of Nuclear Magnetism, 1961.
(82) I. Olsen, R. Koksbang and E. Skou, Electrochim. Acta, 1995, 40, 1701-1706.
(83) P. Jannasch, Electrochimica Acta, 2001, 46, 1641-1649.
(84) J. R. MacCallum; and C. A. Vincent, Polymer Electrolyte Reviews 1 and 2, Elsevier, London, 1987; 1989.
(85) M.-A. De Paoli, A. Zanelli, M. Mastragostino, et al., Journal of Electroanalytical Chemistry, 1997, 435, 217-224.
(86) P. P. Chu, H.-P. Jen, F.-R. Lo, et al., Macromolecules, 1999, 32, 4738-4740.
(87) A. C. Bloise, C. C. Tambelli, R. W. A. Franco, et al., Electrochim. Acta, 2001, 46, 1571-1579.
(88) J. P. Donoso, T. J. Bonagamba, H. C. Panepucci, et al., J. Chem. Phys., 1993, 98, 10026-10036.
(89) P. Mustarelli, C. Capiglia, E. Quartarone, et al., Phys. Rev. B, 1999, 60, 7228-7233.
(90) S. D. Brown, S. G. Greenbaum, M. G. McLin, et al., Solid State Ionics, 1994, 67, 257-262.
(91) A. Subramania, N. T. K. Sundaram, A. R. Priya, et al., Journal of Applied Polymer Science, 2005, 98, 1891-1896.
(92) W. Li, M. Yang, M. Yuan, et al., Journal of Applied Polymer Science, 2007, 106, 3084-3090.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明