博碩士論文 101223050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:54.80.173.217
姓名 曾御程(Yu-cheng Tseng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 電場誘導一維奈米金屬氧化物複合薄膜之研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 不論是在發展燃料電池、鋰電池、逆釩流電池或是各種能量儲存裝置中的離子交換薄膜,提高離子導電度與離子交換效率一直以來都是最核心的議題。以燃料電池為例,提升質子導電度而不影響薄膜整體的機械效能是薄膜技術極大的挑戰。過去的研究中常用的方法是以親水性無機顆粒與高分子複合而成的交換膜,這種薄膜具有高保水性,使薄膜在高溫低濕度下能夠使水分子保存在無機顆粒表面,提供質子傳導的路徑,也提升電池能量轉換功率。
離子交換膜的內部型態具有親水性的孔道結構來傳輸流體,而離子傳遞也決定於介質流體傳輸的行為,因此流道中展現的形貌(Morphology) 也深深地影響離子傳輸。本研究中藉由添加磺酸根修飾後的一維奈米管柱(sZrO2、sTiO2)至Nafion高分子中並經外加強電場下鑄造成膜。在電場誘導下,一維奈米管柱受到極化,使薄膜中的親水孔道隨著管柱方向而形成有方向性且連續的結構。此結構隨著電場誘導方向(垂直薄膜平面),提供了一個直接且連續性的奈米結構的離子傳遞路徑,使離子傳導性大幅的增加。研究中以5 wt% sZrO2、sTiO2含量添加至Nafion中所形成的複合薄膜在室溫下且相對溼度100 RH%中,質子導電度可以高達至7.5x10-2 S/cm。在外加直流電場(DC)下施加電壓1000 V,添加5 wt%奈米管柱複合薄膜可以達到8.35x10-2 S/cm。隨著外加電場強度的增強至7000 V/cm,複合薄膜質子導電度可以更一步地提升至11.6x10-2 S/cm。與市售N117 (5.84x10-2 S/cm) 或與recast 純Nafion(5.2x10-2 S/cm)相比較皆具有大幅度的提升。製作成MEA後的DMFC效能在80℃下能達到110 mW/cm2比recast純Nafion薄膜效能80 mW/cm2還要好。
除改進導電度外,外加電場的誘導使得薄膜內部結構型態形成了更有規則且具方向性的緊密排列,在疏水的部份結晶度增加,在薄膜的機械效能測試中,拉伸強度明顯增強。更有趣的是,隨電場強度的增加,複合薄膜的水含量(water uptake)卻隨之遞減至21% (7000 V/cm)比於未施加電場的Nafion薄膜(24%)為小。另外在尺寸安定性(Swelling Ratio)上,以電場強度7000 V/cm並添加5 wt% sZrO2複合薄膜swelling ratio值最低,可以減少至11%。由小角度X光繞射中也觀察到管狀流道結構在外加電場誘導下縮小, 說明了此新穎膜材吸收較少水量少及展現高抗甲醇竄透的成因。
總結本研究顯示在薄膜中形成直接且連續的親水孔道結構與磺酸化奈米管柱在高分子中的均勻分布的微結構是提高質子導電度的主要因素(關鍵在於構建最優化奈米流管而非高水量或高磺酸化),這也是膜材能以最少量水分達成較高質子傳遞的關鍵所在。經由電場誘導一維奈米管柱的複合薄膜可以有效提昇質子導電度由1.1x10-1 S/cm (室溫)至1.8x10-1 S/cm (80℃),有效降低薄膜膨潤率性,提高抗甲醇竄透性,並同時提高薄膜機械強度。此一新穎方法可以廣汎用於構建其它能源領域相關的高性能膜材。
摘要(英) Enhancing ion conductivity is the primary goal in membrane development in fuel cell, lithium battery, vanadium redox flow battery, or energy storage devices involving ion exchange. The challenge grows when requirements are also given to preserve high mechanical strength while improving ion transport property. A common approach proposed to make the break through is by forming inorganic–organic hybrid. Composite with inorganic nanoparticles is found to retain water/moisture through inorganic surface such that it maintains high conductivity and conserved high energy out-put at elevated temperature and at low environment humidity.
Though highly important, the study of membrane morphology has not been an issue of focus to improve ion conductivity. Membrane morphology is known to be a primary structure factor responsible for fluid transportation in semi-permeable membrane. Since ion conductivity relies heavily on fluid transport; change on channel morphology will lead to change of ion conduction. In present study, a novel approach is reported to prepare ion conducting membrane under high electric field poling condition. One dimension metal oxide (ZrO2, TiO2) nanorods and nanotubes are impregnate first in Nafion, and the whole drying and membrane forming process is carried out under electric field polled condition. The field induced dipole orients the low dimensional nanotube/nanorod thus created aligned hydrophilic morphology that was fixed during membrane formation. The ordered and oriented nano-structures formed in the direction of the applied electric field, provided a direct and continuous ion path. Proton conductivity has reached 7.5x10-2 S/cm in 100% RH condition when 5 wt% of sulfonate functionalized ZrO2 or TiO2 nanotube are composited with Nafion. Upon applying a DC voltage over 1000V, the conductivity is raised to 8.35x10-2 S/cm. With continue increasing of the electric field to 7000 V/cm, the conductivity in the composite film raised to a record value of 11.6x10-2 S/cm. This is substantially improved over that of commercially available Nafion membrane N117 (5.84x10-2 S/cm) or the locally recast Nafion (5.2x10-2 S/cm) membrane.
Diffusion tensor mapping derived from NMR micro-imagine of these membrane confirmed (1) faster water diffusion as reflected in the stronger diffusion tensor, (2) more ordered tensor orientation (narrowing of Euler angle distribution) along the Z-direction (cross-channel director), and (3) more homogeneously distributed diffusion tensor in the electric field poled membrane. These results confirmed ordered diffusion in the e-field poled ionomer is indeed responsible for the high proton conductivity. Due to the more ordered morphology originated from the e-field poling, membrane mechanical property is also enhanced. However, water uptake is gradually reduced from 24% (without poling) to 21% (with poling at 7000 V/cm). Small angle x-ray diffraction shows the tubular flow channel dimension shrunk after electric field poling. This corroborates with the results that swelling ratio is reduced from 23% (without poling) to 18% (with poling at 7000 V/cm).
The fact that electric field poling produces membrane with lower water uptake and smaller swelling ratio and yet displayed high proton conductivity is a surprising find. The results alluded to the possibility that higher proton conductivity can be achieved by more effective use of water molecules through synergistic cooperation of direct water permeation channel and well distributed and connected sulfonate groups. In the present case, the amount of water required to deliver an optimized proton conductivity can be reduced to nearly ½, provided that the membrane morphology is optimized. Enhanced fuel cell performance is also realized by employing the e-poled membrane which shows superbly high ion conductivity.
關鍵字(中) ★ Nafion
★ 有機/無機複合薄膜
★ 電場誘導
★ 一維奈米金屬氧化物
關鍵字(英)
論文目次 目錄 頁次
中文摘要 i
Abstract iii
誌謝辭 v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 燃料電池原理及組成 2
1-3 研究動機 5
第二章 基本原理與文獻回顧 7
2-1 燃料電池質子交換膜的介紹 7
2-2 Nafion薄膜微結構及質子傳導機制 9
2-2-1 Nafion薄膜的傳導機制 10
2-2-2 薄膜微結構的性質與探討 12
2-3 Nafion 薄膜的改良與探討 17
2-3-1 有機/無機物複合薄膜的改質 18
2-4 非PFSA系列薄膜改良於燃料電池的應用 24
2-4-1 碳氫高分子薄膜 24
2-4-2 酸鹼複合高分子薄膜 27
2-4-3 團聯共聚高分子 29
2-5 電場誘導高分子與奈米無機物的性質與探討 30
2-5-1 電場裝置的設計與應用原理 30
2-5-2 外加電場誘導奈米無機物與高分子之性質探討 31
2-5-3 外加電場於離子交換膜上的應用 34
第三章 實驗方法與原理 38
3-1 實驗儀器及技術原理 38
3-1-1 傅立葉式紅外線吸收光譜儀( FT-IR) 38
3-1-2 示差掃描熱卡計 (Differential Scanning Calorimeter, DSC) 38
3-1-3 X光繞射分析(X-ray Diffraction;XRD) 39
3-1-4 小角度X光散射(Small angle X-ray scattering, SAXS ) 39
3-1-5 場發射掃描式電子顯微鏡( FE-SEM ) 39
3-1-6 薄膜吸水量 (Water Uptake) 與膨潤 (Swelling) 40
3-1-7 離子交換容量 (Ion Exchange Capacity;IEC) 41
3-1-8 複合薄膜機械強度測試 41
3-1-9 甲醇滲透率 (Methanol permeability) 43
3-1-10 質子導電度測量 (Proton Conductivity) 44
3-1-11 DMFC單電池效能測試 46
3-2 物質合成及薄膜製備 47
3-2-1 合成Zirconate Nanorod[70] 47
3-2-2 合成Titanate Nanotube[71] 47
3-2-3 奈米管柱表面磺酸化修飾 47
3-2-4 Nafion solution製備 48
3-2-5 Nafion/inorganic複合薄膜製備 48
3-2-6 外加電場裝置設計 49
3-2-7 Nafion 117前處理 49
3-2-8 偏光顯微鏡觀察奈米粒子排列 50
3-3 實驗藥品 50
3-4 樣品命名規則 52
第四章 結果與討論 53
4-1 一維奈米管柱 (ZrO2,TiO2) 合成與表面官能基鑑定 54
4-1-1 FT-IR 表面官能基鑑定 54
4-1-2 X光粉末繞射分析(XRD) 56
4-1-3 SEM & TEM 微結構鑑定 57
4-1-4 DSC保水性質分析 58
4-2 添加磺酸化奈米管柱(sZrO2,sTiO2)複合薄膜之性質與效能分析 60
4-2-1 (sZrO2,sTiO2)/Nafion複合薄膜含水量、尺寸膨潤、質子導電度的綜合比較 60
4-2-2 XRD薄膜結晶程度比較 61
4-2-3 DSC 保水性質分析 63
4-2-4 薄膜機械效能測試 64
4-2-5 薄膜抗甲醇竄透性 65
4-2-6 複合薄膜Selevtivity選擇性 66
4-3 外加電場誘導磺酸化奈米管柱之複合薄膜探討及分析 67
4-3-1 SEM 薄膜微結構影像 67
4-3-2 DSC 薄膜性質分析 70
4-3-3 XRD 薄膜結晶程度比較 72
4-3-4 SAXS 小角度散射微結構分析 73
4-3-5 吸水性、膨潤率與質子導電度性質的綜合比較 75
4-3-6 複合薄膜機械效能測試 78
4-3-7 變溼變溫質子導電度測試 79
4-3-8 質子導電度與甲醇燃料竄透率比較 81
4-3-9 Selectivity薄膜選擇性 83
4-3-10 DMFC單電池效能測試 84
第五章 結論與未來展望 86
第六章 參考文獻 89
參考文獻 [1] 台灣燃料電池資訊網(Taiwan Fuel Cell Information), http://www.tfci.org.tw/
[2] B. Smitha, S. Sridhar, A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications-a review," Journal of Membrane Science, vol. 259, pp. 10-26, 2005.
[3] H. G. Haubold, Th. Vad, H. Jungbluth, P. Hiller, "Nano structure of NAFION: a SAXS study," Electrochimica Acta, vol. 46, pp. 1559-1563, 2001.
[4] A. K. Sahu, S. Pitchumani, P. Sridhar and A. K. Shukla, "Nafion and modified-Nafion membranes for polymer electrolye fuel cell:An overview," Indian Academy of Science, vol. 32, pp. 285-294, 2009.
[5] H. L. Yeager, A. Steck, "Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure,"Journal of The Electrochemical Society, vol.128, pp. 1880-1884, 1981.
[6] 吳千舜 "奈米複合離子交換膜的離子與分子多尺度的動態行為之研究," 國立中央大學,博士論文,民國99年。
[7] X. Duan and S. Scheiner, "Analytic functions fit to proton transfer potentials," Journal of Molecular Structure, vol. 270, pp. 173-185, 1992.
[8] N. Laurs and P. Bopp, "Modelling the H3O+-Ion: A Simulation Study of an Aqueous HCl Solution," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 97, pp. 982-995, 1993.
[9] P. Choi, Nikhil H. Jalani, and R. Datta, "Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity," Journal of The Electrochemical Society, vol. 152, pp. 123-130, 2005.
[10] K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells," Journal of Membrane Science, vol. 185, pp. 29-39, 2001.
[11] S. R. Klaus, and Q. Chen, " Parallel cylindrical water nanochannels in Nafion fuel-cell membranes," Nature Materials, vol. 7, pp. 75-83, 2008.
[12] O. Kwon, S. Wu, and D. M. Zhu, "Configuration Changes of Conducting Channel Network in Nafion Membranes due to Thermal Annealing," Journal of Physical Chemistry B, vol. 114, pp.14989-14994, 2010.
[13] M. Bass, A. Berman, A. Singh, O. Konovalov, V. Freger, "Surface Structure of Nafion in Vapor and Liquid," The Journal of Physical Chemistry B, vol. 114, pp. 3784-3790, 2010.
[14] J. E. Hensley, J. Douglas Way, S. F. Dec, K. D. Abney, "The effects of thermal annealing on commercial Nafion® membranes," Journal of Membrane Science, vol. 298, pp. 190-201, 2007.
[15] D. Rivin, C. E. Kendrick, P. W. Gibson, N. S. Schneider, "Solubility and transport behavior of water and alcohols in Nafion," Polymer, vol.42, pp. 623-635, 2001.
[16] C. H. Ma, T. Leon Yu, H. L. Lin, Y. T. Huang, Y. L. Chen, U-S. Jeng, Y. H. Lai, Y. S. Sun, "Morphology and properties of Nafion membranes prepared by solution casting," Polymer, vol. 50, pp. 1764-1777, 2009.
[17] Richard S. Yeo, "Dual cohesive energy densities of perfluorosulphonic acid (Nafion) membrane," Polymer, vol. 21, pp. 432-435, 1980.
[18] H. L. Lin, T. Leon Yu, F. H. Han, "A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC," Journal of Polymer Research, vol.13, pp. 379-385, 2006.
[19] M. Watanabe, H. Uchida, M. Emori, "Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal Oxides:  Experimental Analysis of the Self-Humidification and Suppression of Gas Crossover in Fuel Cells," Journal of Physical Chemistry, vol.102, pp. 3129-3137, 1998.
[20] P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, V. Antonucci, "Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation," Solid State Ionics, vol. 125, pp. 431-437, 1999.
[21] A. Sacc`a, A. Carbone, E. Passalacqua, A. D`Epifanio, S. Licoccia, E. Sale, F. Traini, R. Ornelas, "Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)," Journal of Power Sources, vol. 152, pp. 16-21, 2005.
[22] K. A. Mauritz, " Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides," Materials Science and Engineering: C, vol.6, pp. 121-133, 1998.
[23] R. Jiang, H. R. Kunz, J. M. Fenton, "Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells," Journal of Membrane Science, vol. 272, pp. 116-124, 2006.
[24] K. Li, G. Ye, J. J. Pan, H. Zhang, M. Pan, "Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes," Journal of Membrane Science, vol. 347, pp. 26-31, 2010.
[25] H. Tang, Z. Wan, M. Pan, S. P. Jiang, "Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells," Electrochemistry Communications, vol. 9, pp. 2003-2008, 2007.
[26] C. Yang, S. Srinivasan, A. S. Arico, P. Creti`, V. Baglio, V. Antonucci, "Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature," Electrochemical and Solid-State Letters, vol. 4, pp. 31-34, 2001.
[27] G. Alberti, L. Boccali, M. Casciola, L. Massinelli, E. Montoneri, "Protonic conductivity of layered zirconium phosphonates containing -SO3H groups. III. Preparation and characterization of [gamma]-zirconium sulfoaryl phosphonates," Solid State Ionics, vol. 84, pp. 97-104, 1996.
[28] C. Bi, H. Zhang, Y. Zhang, X. Zhu, Y. Ma, H. Dai, S. Xiao, "Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion® self-humidifying membrane for proton exchange membrane fuel cell applications," Journal of Power Sources, vol. 184, pp. 197-203, 2008.
[29] A. Mahreni, A. B. Mohamad, A. A. H. Kadhum, W. R. W. Daud, S. E. Iyuke, "Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity," Journal of Membrane Science, vol. 327, pp. 32-40, 2009.
[30] G. Gnana Kumar, A. R. Kim, K. S. Nahm, R. Elizabeth, "Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC," International Journal of Hydrogen Energy, vol. 34, pp. 9788-9794, 2009.
[31] H. Wang, B. A. Holmberg, L. Huang, Z. Wang, A. Mitra, J. M. Norbeck, Y. Yan, "Nafion-bifunctional silica composite proton conductive membrane," Journal of Materials Chemistry, vol. 12, pp. 834-837, 2002.
[32] Y. Jin, S. Qiao, L. Zhang, Z. P. Xu, S. Smart, J. C. Diniz da Costa, G. Q. Lu, "Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers," Journal of Power Sources, vol. 185, pp. 664-669, 2008.
[33] Y. Tominaga, I. C. Hong, S. Asai, M. Sumita, "Proton conduction in Nafion composite membranes filled with mesoporous silica," Journal of Power Sources, vol. 171, pp. 530-534, 2007.
[34] B. R. Matos, E. L. Santiago, F. C. Fonseca, M. Linardi, V. Lavayen, L. O. Ladeira, A. S. Ferlauto, "Nafion--Titanate Nanotube Composite Membranes for PEMFC Operating at High Temperature," Journal of The Electrochemical Society, vol. 154, pp. B1358-B1361, 2007.
[35] B. R. Matos, E. I. Santiago, J. F. Q. Rey, A. S. Ferlauto, E. Traversa, M. Linardi, F. C. Fonseca, "Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 °C with titania nanoparticles and nanotubes as fillers," Journal of Power Sources, vol. 196, pp. 1061-1068, 2011.
[36] R. Kannan, M. Parthasarathy, S. U. Maraveedu, S. Kurungot, V. K. Pillai, "Domain Size Manipulation of Perflouorinated Polymer Electrolytes by Sulfonic Acid-Functionalized MWCNTs To Enhance Fuel Cell Performance," Langmuir, vol. 25, pp. 8299-8305, 2009.
[37] S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications," Journal of Membrane Science, vol. 173, pp. 17-34, 2000.
[38] P. G. Khalatur, P. V. Komarov, I. N. Veselov, P. P. Chu, A. R. Khokhlov, "Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone)," Chemical Physics Letters, vol. 487, pp. 291-296, 2010.
[39] J. M. Amarilla, R. M. Rojas, J. M. Rojo, M. J. Cubillo, A. Linares, J. L. Acosta, "Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites," Solid State Ionics, vol. 127, pp. 133-139, 2000.
[40] V. Neburchilov, J. Martin, H. Wang, J. J. Zhang, "A review of polymer electrolyte membranes for direct methanol fuel cells," Journal of Power Sources, vol. 169, pp. 221-238, 2007.
[41] X. Li, C. Zhao, H. Lu, Z. Wang, H. Na, "Direct synthesis of sulfonated poly(ether ether ketone ketone)s (sPEEKKs) proton exchange membranes for fuel cell application," Polymer, vol. 46, pp. 5820-5827, 2005.
[42] B. Yang and A. Manthiram, "Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells," Journal of Power Sources, vol. 153, pp. 29-35, 2006.
[43] S. D. Mikhailenko, S. M. J. Zaidi, S. Kaliaguine, "Sulfonated polyether ether ketone based composite polymer electrolyte membranes," Catalysis Today, vol. 67, pp. 225-236, 2001.
[44] M. L. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, S. P. Nunes, "Reduction of methanol permeability in polyetherketone -heteropolyacid membranes," Journal of Membrane Science, vol. 217, pp. 5-15, 2003.
[45] Y. H. Su, Y. L. Liu, Y. M. Sun, J. Y. Lai, D. M. Wang, Y. Gao, B. Liu, M. D. Guiver, "Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells," Journal of Membrane Science, vol. 296, pp. 21-28, 2007.
[46] S. J. Paddison, "Proton conduction mechanisms at low degrees of hydration in sulfonic acid–based polymer electrolyte membranes, "Annual Review of Materials Research, vol. 33, pp. 289-319, 2003.
[47] G. Avgouropoulos, J. Papavasiliou, M. K. Daletou, J. K. Kallitsis, T. Ioannides, S. Neophytides, "Reforming methanol to electricity in a high temperature PEM fuel cell," Applied Catalysis B: Environmental, vol. 90, pp. 628-632, 2009.
[48] Deborah J. Jones, Jacques Roziere, "Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications," Journal of Membrane Science, vol. 185, pp. 41-58, 2001.
[49] J. S. Wainright, M. H. Litt and R. F. Savinell, "High-Temperature Membranes," in Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3, W. Vielstich, H.A. Gasteiger and A.Lamm, Eds., Wiley, New York, pp. 436-455, 2003
[50] J. T. Wang, J. S. Wainright, R. F. Savinell, M. Litt, "A direct methanol fuel cell using acid-doped poly- benzimidazole as polymer electrolyte," Journal of Applied Electrochemistry, vol. 26, pp. 751-756, 1996.
[51] L. Qingfeng, H. A. Hjuler, N. J. Bjerrum, "Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications," Journal of Applied Electrochemistry, vol. 31, pp. 773-779, 2001.
[52] R. Kannan, P. P. Aher, T. Palaniselnam, S. Kurungot, U. K. Kharul, V. K. Pillai, "Artificially Designed Membranes Using Phosphonated Multiwall Carbon Nanotube−Polybenzimidazole Composites for Polymer Electrolyte Fuel Cells," The Journal of Physical Chemistry Letters, vol. 1, pp. 2109-2113, 2010.
[53] J. A. Kerres, "Development of ionomer membranes for fuel cells," Journal of Membrane Science, Vol.185, pp.3-27, 2001.
[54] J. Won, H. H. Park, Y. J. Kim, S. W. Chio, H. Y. Ha, I. H. Oh, H. S. Kim, Y. S. Kang, K. J. Ihn, "Fixation of Nanosized Proton Transport Channels in Membranes," Marcomolecules, vol. 36, pp. 3228-3234, 2003.
[55] Z. Bai, M. Yoonessi, S. B. Juhl, L. F. Drummy, M. F. Durstock, T. D. Dang, "Synthesis and Characterization of Multiblock Sulfonated Poly (arylenethioethersulfone) Copolymers for Proton Exchange Membranes," Macromolecules, vol. 41, pp. 9483-9486, 2008.
[56] http://www.pjtime.com/2009/10/21543387.shtml.
[57] W. Eerenstein, N. D. Mathur and J. F. Scott, "Multiferroic and magnetoelectric materials," Nature, vol. 442, pp. 759-765, 2006.
[58] W. Bauhofer, C. A. Martin, J. K. W. Sandler, A. H. Windle, M. K. Schwarz, M. S. P. Shaffer, " Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites," Polymer, vol. 46, 877-886, 2005.
[59] G. Chen, H. Wang, H. Zhang, W. Zhao, W. Zhang, "Preparation of polymer/ oriented graphite nanosheet composite by electric field-inducement," Composites Science and Technology, vol. 68, pp. 238-243, 2008.
[60] Holly L. Ricks-Laskoski and Arthur W. Snow, "Synthesis and Electric Field Actuation of an Ionic Liquid Polymer," J. AM. CHEM. SOC, vol. 128, pp. 12402-12403, 2006.
[61] W. J. Lin, Q. J. Meng, Y. .S. Zheng, Z. C. Zhang, W. M. Xia, Z. Xu, "Electric energy storage properties of poly(vinylidene fluoride)," Applied Physics Letters, vol. 96, pp. 192905, 2010.
[62] M. Wegener, "Polarization-electric field hysteresis of ferroelectric PVDF films: Comparison of different measurement regimes," Review of Scientific Instrument, vol. 79, pp.106103, 2008.
[63] M. Y. Chung and D. C. Lee, "Electrical Properties of Polyvinylidene Fluoride Films Prepared by the High Electric Field Applying Method," Journal of the Korean Physical Society, vol. 38, pp. 117-122, 2001.
[64] X. Wei and M. Z. Yates,"Nafion®/polystyrene-b-poly(ethylene-ran-butylene)-b- polystyrene composite membranes with electric field-aligned domains for improved direct methanol fuel cell performance," Journal of Power Sources, vol. 195, pp. 736-743, 2010.
[65] D. Liu, M. Z. Yates, "Tailoring the structure of S-PEEK/PDMS proton conductive membranes through applied electric fields," Journal of Membrane Science, vol. 322, pp. 256-264, 2008.
[66] Y. Wang, S. Zhao, J. Ren, J. Zhang, "Electric field processing to control the structure of titanium oxide/sulfonated poly (ether ether ketone) hybrid proton exchange membranes," Journal of Membrane Science, vol. 437, pp. 65-71, 2013.
[67] Marius D. Stamate, "On the dielectric properties of dc magnetron TiO2 thin films," Applied Surface Science, vol. 218, pp. 318-323, 2003.
[68] S. B. Boob, "Field-structured proton exchange membranes for fuel cells," University of Connecticut, 2007.
[69] 侯官廷,"磺酸化二氧化鈦奈米管Nafion複合質子交換膜及燃料電池應用," 國立中央大學,碩士論文,民國100年。
[70] W. Li, D. Wang, L. Kumari, "Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route," Nanotechnology, vol. 19, pp. 195602, 2008.
[71] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, "Titania Nanotubes Prepared by Chemical Processing," Advanced Materials, vol. 11, pp. 1307-1311, 1999.
[72] 李亮儀,"奈米管複合高分子中高溫質子交換膜," 國立中央大學,碩士論文,民國97年。
[73] T. D. Gierke, G. E. Munn, F. C. Wilson, "The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies," Journal of Polymer Science: Polymer Physics Edition, vol. 19, pp. 1687-1704, 1981.
[74] Y. Kawano, and S. H. de Almeida, "Thermal behavior of Nafion membrane," Journal of Thermal Analysis and Calorimetry, vol. 58, pp. 569-577, 1999.
[75] Y. L. Liu, C. Y. Hsu, Y. H. Su, J. Y. Lai, "Chitosan-Silica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles for Pervaporation Dehydration of Ethanol-Water Solutions," Biomacromolecules, vol. 6, pp. 368-373, 2005.
[76] L. Xu, Z. T. Wang, Y. X. Wang, Q. J. Gao, G. Q. Wei, J. Lu, "Electric field-treated MEAs for improved fuel cell performance," Journal of Power Sources, vol. 186, pp. 293-298, 2009.
[77] 衣寶廉,燃料電池-原理與應用,初版,五南書局,民國九十四年。
指導教授 諸柏仁(Po-jen Chu) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明