博碩士論文 101223602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:35.170.81.210
姓名 俞媛(Yuyun Febriani)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討
★ 合成各類以雜環為核心的分子並研究其非線性光學性質★ 含2,4,6-三取代吡啶及喹喔啉雜環單元之染料分子的合成與其光學性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文中系統性地探討含有三嗪單元結構的數個染料分子之線性光學與非線性光學性質。線性光學性質實驗包含線性吸收光譜、線性螢光光譜、螢光量子產率與生命期。線性螢光光譜實驗結果指出,模型分子1〜3會因為分子內電荷轉移(Intramolecular Charge-Transfer)具有較大的Stokes shifts。利用雙光子誘導螢光技術量測得到這些模型分子在690 nm處的雙光子吸收截面值分別為220.46 GM、3134.16 GM以及1873.74 GM。由此結果得知延長外圍分子共軛結構與增加推電子性官能基的數目可有效提升雙光子激發截面。另外,利用奈秒雷射進行光學限幅能力研究的結果指出模型分子1〜3皆在690 nm展現良好的光學限制特性。這些初步的結果顯示,多岐化三嗪類分子具有光限幅之應用潛力。
摘要(英) This research focuses on studying structure-property relationship, exploring two-photon absorption properties and optical power-limiting properties as one of the applications derived from multi-branched triazine. Three new multi-branched triazine compounds : three- and six-branched (compound 1-3) have been designed and synthesized. Their photophysical properties were studied by one-photon fluorescence, fluorescence quantum yield, life-time and two-photon absorption (2PA) cross-section. One-photon fluorescence experimentally was shown that the chromophores (1-3) possess larger Stokes shifts on their fluorescence emission mainly due to intramolecular charge-transfer (ICT). 2PA cross-section measured by two-photon-excited fluorescence (2PEF) technique were determined to be 220.46, 3134.16, and 1873.74 GM for compound 1,2, and 3, respectively at 690 nm. This result indicates that increasing the branch number incorporated to original D-π-A structure frame work could be an effective approach to get the strong molecular 2PA and shown that using a σ-electron pair as bridge might be an efficient way to transfer charge as well as a π-bridge. At the same time, the power-control properties for these chromophores have been investigated by using a tunable nanosecond laser probed at 690 nm and shown that these chromophores have good optical-limiting behavior. These initial results demonstrated that multi-branched triazine chromophores are a highly suitable class of two-photon absorbing materials and would provide attractive potential application in the optical-limiting field.
關鍵字(中) ★ 雙光子吸收 關鍵字(英) ★ Two-Photon Absorption
論文目次 TABLE OF CONTENTS
ABSTRACT....................................................i
中文摘要...................................................ii
ACKNOWLEDGEMENTS..........................................iii
TABLE OF CONTENTS..........................................iv
LIST OF FIGURES............................................vi
LIST OF TABLES.............................................ix
CHAPTER 1INTRODUCTION.......................................1
1.1 Background..............................................1
1.2 Purpose.................................................5
1.3 Organization of Thesis..................................5
CHAPTER 2 OVERVIEW..........................................7
2.1.Introduction of Two-Photon Absorption (2PA).............7
2.2.Molecular Designs of Two-Photon Absorption (2PA)Material Based on 1,3,5-triazine....................................11
2.2.1. Introduction of Molecular Designs of Two-Photon Absorption (2PA) Material..................................11
2.2.2. Strategy for Molecular Design of Two-Photon Absorption (2PA) Material Based on 1,3,5-triazine..........13
2.2.2.1. 1,3,5-triazine as Core/Acceptor Groups............15
2.2.2.2. Fluorene as Conjugated Bridge.....................16
2.2.2.3. Nitrogen and Vinyl as Elongating Branch (Branch Effect)....................................................17
2.2.2.4. Diphenylamine as End-Donating Groups..............18
2.3. Two-Photon Absorption (2PA) Properties................19
2.3.1. Linear Optical Characterization.....................19
2.3.1.1. Absorption and one-photon-induced fluorescence emission spectra...........................................20
2.3.1.2. Stokes Shift......................................21
2.3.1.3.Quantum Yields and Life Time.......................23
2.3.2. Non-Linear Optical Characterization.................24
2.3.2.1.Non-Linear Transmission (NLT) Method...............26
2.3.2.2.Two-Photon Excited Fluorescence Method (2PEF)......27
2.4. Application of Two-Photon AbsorptionMaterials.........28
2.4.1. Optical Power Limiting..............................28
2.4.2. Frequency Up-Converted Lasing.......................30
2.4.3. Optical Data Storage and 3-D Micro-Fabrication......31
2.4.4. Two-Photon Fluorescence Microscopy..................33
2.4.5. Two-Photon Photodynamic Therapy....................34
CHAPTER 3 EXPERIMENTAL SECTION.............................36
3.1. Materials.............................................36
3.2. Methods...............................................36
3.2.1. Linear Optical Measurement..........................36
3.2.1.1. Absorption and One-photon-Induced Fluorescence Emission...................................................36
3.2.1.2. Life Time and Fluorescence Quantum Yield..........37
3.2.1.3. Solvatochromism (Solvent Effect)..................37
3.2.2. Non-Linear Optical Properties Measurement...........38
3.2.3. Power-Control Optical Properties Measurement........40
CHAPTER 4 RESULT AND DISCUSSION............................42
4.1. Optical Properties....................................42
4.1.1. Linear Optical Properties...........................42
4.1.1.1. Optical Absorption and Emission Properties........42
4.1.1.2. Stoke Shift.......................................48
4.1.1.3.Quantum Yield (ΦF) and Life Time..................51
4.1.2. Non-Linear Optical Properties.......................53
4.1.2.1. Two Photon Absorption Cross Section (σ2) Properties.................................................53
4.2. Optical Power-Control Properties......................61
4.2.1. Power Limiting Properties...........................61
4.2.2. Power Stabilization Properties......................63
CHAPTER 5 CONCLUSION.......................................66
REFERENCES.................................................68
LIST OF FIGURES
Figure 2.1 Positive of photographic plate, indicating the blue emission of a CaF2:Eu2+ crystal under strong light beam ruby-crystal laser with 694.3 nm wavelength.................7
Figure 2.2 Schematic description of an elementary multiphoton induced molecular transition process. Solid lines represent real eigenstates; dashed lines represent intermediate states........................................8
Figure 2.3 The Jablonski Electronic Excitation Energy Diagram.....................................................9Figure 2.4 One Photon Absorption ..........................10
Figure 2.5 Two Photon Absorption ..........................10
Figure 2.6 Blue Fluorescent Intensity of Sample versus Incident Red Intensity.. ..................................11
Figure 2.7 Molecular Structure Motifs for One-Dimensional Two-Photon Absorbing Chromophores. Ar-Aromatic Building Block......................................................12
Figure 2.8 The Structures of New Octupolar Series There-and Six-Branched Chromophores..................................14
Figure 2.9 Basic Structural Motifs for 2D and 3D Two-Photon Absorbing Octupoles........................................15
Figure 2.10 The Three Isomer Structures of Triazine .......15
Figure 2.11 Fluorene-Based Derivatives as Fluorophores....16
Figure 2.12 Diphenylaminofluorene-Based Chromophores with Selected π Acceptors......................................18
Figure 2.13 Excitation, Emission, and Stokes Shift Spectra.22
Figure 2.14 The effects of solvent on absorption and emission energies.........................................23
Figure 2.15 2PA-induced nonlinear transmission as a function of the input light intensity..............................26
Figure 2.16 Measured nonlinear transmission data (a) and output pulse energy (b) versus the input energy of~815 nm, ~5 ns laser pulses.........................................30
Figure 2.17 (a) Measured instantaneous peak intensity fluctuation of the input laser pulses, and (b) measured instantaneous peak intensity fluctuation of the output laser pulses..............................................30
Figure 2.18 3D microstructures produced by two-photon-initiated polymerization. a, Photonic band gap structure. b, Magnified top-view of structure in a. c, Tapered waveguide structure. d, Array of cantilevers.........................30
Figure 2.19 Examples of real 3D microfabrication using the 2PA technique with a low numerical aperture objective .....32
Figure 2.20 Left panel shows the two-photon fluorescence image of a breast cancer cell treated with AN-152:C625 (drug labeled with the green emitting dye C625) and [D-Lys 6 ]LH-RH:TPR(the peptide carrier labeled with the red emitting dye TPR). Right panel shows the localized spectra obtained from different parts of the cell indicated by the arrows in the image..................................................34
Figure 2.21 Process of the conventional photodynamic therapy (right) and the newly proposed approach based on two-photon process (left). PS: photosensitizer; TPC: two-photon chromophore................................................35
Figure 3.1 Optical setup for 2PEF experiments.............39
Figure 3.2 Experimental setup for the effective optical power limiting and power stabilization behavior studies...40
Figure 4.1 Absorption Spectra of Compound 1-3 in Toluene..43
Figure 4.2 Emission Spectra of Compound 1-3 in Toluene....43
Figure 4.3 (a) Wavelength shifted range; (b) example illustration a comparison of the π-π* energy gap in a series of polyenes of increasing chain length.............44
Figure 4.4 Lippert plots (Stokes Shift (cm-1) vs Orientational Polarity (Δf) of The Solvent Mixture) for Compounds 1-3..............................................49
Figure 4.5 Power Dependence of Compound 1 (1x10-4M) in Toluene Probed @790 nm.....................................54
Figure 4.6 Power Dependence of Compound 2 (1x10-4M) in Toluene Probed @690 nm ...................................55
Figure 4.7 Power Dependence of Compound 3 (1x10-4M) in Toluene Probed @690 nm.....................................55
Figure 4.8 2PA Cross Section (GM) of Compound 1-3 in Solution-Phase Toluene Solvent.............................56
Figure 4.9 The Two Photon Excited Fluoresence (TPEF) Spectra of compounds...............................................60
Figure 4.10 Power Limiting and Transmitance of Compound 1-3 (2x10-2M) in Toluene.......................................62
Figure 4.11 Power Stabilization of Compound 1-3 (2x10-2M) in Toluene Probed @690 nm 1mJ.................................64
LIST OF TABLES
Table 4.1 Linear Optical Properties of Compound 1-3 in Solution Phase-Various Solvent.............................47
Table 4.2 The Stokes Shifts Data at Different Solvent Δf of Compound 1-3 in This Research..............................48
Table 4.3 Photophysical Properties of DFL-1,3,5-Ta-series (compound 1-3) in Solution Phase-Toluene Solvent...........56
參考文獻 [1] Goppert-Mayer, M. Ann.Phys. 1931, 9, 273 in He, G.S.; Tan, L-S.; Zheng, Q.; Prasad, P.N. Chem. Rev. 2008, 108, 1246.
[2] Rum, M.; Perry, J.W. Advances in Optics and Photonics 2010, 2, 455-456.
[3] Kaiser, W.; Garrett, C. G. B. Physical Review Letters 1961, 7, 229.
[4] He, G. S.; Tan, L-S.; Zhen, Q.; Prasad, P. N. Chem. Rev. 2008, 108, 1246-1255, 1252-1255, 1285-1287, 1300-1303, 1310,1313, 1316-1319
[5] Ajit, B. 2007. Dissertations: A Building Block Approach towards Novel Nonlinear Optical Materials. The University of Michigan.
[6] He, G. S.; Xu, G. C.; Prasad, P. N.; Reinhardt, B. A.; Bhatt, J. C.; Dillard, A. G. Optic Letters 1995, 20, 435.
[7] Belfield, K. D.; Schafer, K. J.; Liu, Y.; Liu, J.; Ren, X.; Stryland, E. W. Journal of Physical Organic Chemistry 2000, 13, 841.
[8] Bergendahl, L. T.; Paterson, M. J. Journal of Physical Chemistry B 2012, 116, 11818-11819.
[9] Lemercier, G.; Mulatier, J.-C.; Martineau, C.; Anémian, R.; Andraud, C.; Wang, I.; Stéphan, O.; Amari, N.; Baldeck, P. C.R.Chimie. 2005, 8, 1315.
[10] Cumpston, B. H.; Ananthavel, S.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kubler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J.; Röckel, H.; Rumi, M.; Wu, X.-L.; Marder, S. R.; Perry, J. W. Nature 1999, 398, 52-53.
[11] He, G. S.; Yuan, L.; Cui, Y.; Li, M.; Prasad, P. N. Journal Applied Physics 1997, 81, 2532-2533.
[12] Lin, T.-C.; Chung, S.-J.; Kim, K-S.; Wang, X.; He, G. S.; Swiatkiewicz, J.; Pudavar, H.E.; Prasad, P. N. Advances in Polymer Science 2003, 161, 162-165, 174-185.
[13] Kannan, R.; He, G. S.; Lin, T.-C.; Prasad, P. N.; Vaia, R.A.; Tan, L.-S. Chem.Mater. 2004, 16, 191-192.
[14] Wei, L.; Shi, J. P.; Zhou, Z. Q.; Cui, Y.P.; Hu, H. W.; Lu, G. Y.; Chinese Chemical Letters 2012, 23, 869.
[15] Belfield, K. D.; Yao, S.; Bondar, M. V.; Advanced Polymer Science 2008, 213, 99-102, 143.
[16] Lin, T.-C.; Lee, Y.-H.; Huang, B.-R.; Hu, C-L.; Li, Y.-K. Tetrahedron 2012, 68, 4936.
[17] Zhang, L.; Zou, L.; Xiao, J.; Zhou, P.; Zhong, C.; Chen, X.; Qin, J.; Mariz, I. F. A.; Macôas, E. Journal of Materials Chemistry 2012, 22, 16782.
[18] Zheng, Z.; Zhou, H.-P.; Xu, G.-Y.; Yang, X.-F.; Cheng, L.-H.; Kong, L.; Feng, Y.; Wu, J.-Y.; Tian, Y.-P. Tetrahedron 2012, 68, 6569-6570.
[19] Zhou, H.; Zheng, Z.; Xu, G.; Yu, Z.; Yang, X.; Cheng, L.; Tian, X.; Kong, L.; Wu, J.; Tian, Y. Dyes and Pigments 2012, 94, 571.
[20] Abbotto, A.; Baverina, L.; Bradamante, S.; Facchetti, A.; Pagani, G.A.; Bozio, R.; Ferrante., P. D.; Signorini, R. Synthetic Metals 2003, 136, 795.
[21] 陳柏村,「新型具喹喔啉、三嗪和吡嗪結構之染料分子的合成及其光學性質探討」,國立中央大學,碩士論文,民國100年。
[22] Wang, Y.; Jiang, Y.; Hua, J.; Tian, H.; Qian, S. Journal of Applied Physics 2011, 110, 0335181-0335183.
[23] Nguyen, D. M. 2009. Dissertation: Design, Synthesis, and Characterization of Novel Hydrophilic Fluorene-Based Derivatives for Bioimaging Applications. University of Central Florida.
[24] Basedia, D. K.; Dubey, B. K.; Shrivastava, Birendra. American Journal of Pharmtech Research 2011, 1, 174-175.
[25] Liu, Li.; Wei, H.; Shi, J.; Lű, C.; Cui, Y.; Lu, G.-Y. Chin.J.Chem. 2011, 29, 2132-2133.
[26] Kim, H. M.; Cho, B. R.; Chem. Commun. 2009, 155.
[27] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998, 10, 1863.
[28] Guo, E. Q.; Ren, P. H.; Zhang, Y. L.; Zhang, H. C.; Yang, W. J. Chem. Commun. 2009, 5859.
[29] Skoog, D. A.; West, D. M. 1980, 149-151.
[30] Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. J.Phys.Chem. 2010, 114, 17128.
[31] Buncel, E.; Rajagopal, S. Acc. Chem.Res. 1990, 23, 226-227.
[32] Fromherz, P. J.Phys.Chem. 1995, 99, 7188, 7191.
[33] http://www.advancedaquarist.com/2006/9/aafeature
[34] Lin, T.-C.; He, G. S.; Prasad, P.N.; Tan, L.-S.; J.Mater.Chem. 2004, 14, 988.
[35] Lakowicz, J. R. 2006, 209
[36] Porrès, L.; Holland, A.; Pålsson, L.-O.; Monkman, A. P.; Kemp, C.; Beeby, A. J. Fluoresc. 2006, 16, 267.
[37] Gardecki, J. A.; Maroncelli, M. Appl. Spectrosc. 1998, 52, 1179.
[38] Reynolds, G. A.; Drexhage, K. H.; Opt. Commun. 1975, 13, 222.
[39] Xu, C.; Webb, W. W. J. Opt. Soc. Am. B. 1996, 13, 481.
[40] Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. 2009, 393.
[41] https://en.wikipedia.org/wiki/Solvent
[42] Ren, S.; Zeng, D.; Zhong, H.; Wang, Y.; Qian, S.; Fang, Q. J.Phys.Chem. 2010, 114, 10379.
[43] Zou, L.; Liu, Z.; Yan, X.; Liu, Y.; Fu, Y.; Liu, J.; Huang, Z.; Chen, X.; Qin, J. J.Org.Chem. 2009, 5587.
[44] Bruno, T. J.; Svoronos, P. D. N. CRC Press. 1989, 89.
[45] Liu, C.; Tang, K.-C.; Zhang, H.; Pan, H.-A., Hua, J.; Li, B.; Chou, P.-T. J.Phys.Chem.A. 2012, 116, 1243.
[46] Zeng, S.; Ouyang, X.; Zeng, H.; Ji, Wei.; Ge, Z. Dyes and Figments 2012, 94, 294.
[47] Kuzyk, M.G. J.Chem.Phys. 2003, 119, 8330.
[48] Jiang, Y.; Wang, Y.; Wang, B.; Yang, J.; He, N.; Qian, S.; Hua, J. Chem, Asian J. 2011, 2, 157.
指導教授 林子超(Tzu-Chau Lin) 審核日期 2013-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明