博碩士論文 101224002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.238.248.103
姓名 陳冠福(Kuan-Fu Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 環狀核苷酸磷酸二酯酶4B對小鼠樹突細胞分化與CXCR4表現之調控
(Effects of phosphodiesterase 4B on mouse dendritic cell differentiation and CXCR4 expression)
相關論文
★ PDE抑制劑與cAMP訊號傳導對類風濕性關節炎小鼠模型中CD4+ T細胞釋放IFN-g與IL-17A之調控★ PDE4和cAMP訊號傳導於小鼠骨髓細胞分化為樹突細胞之角色
★ 利用斑馬魚研究肝臟疾病和肝癌之發生:B型肝炎病毒X抗原,黃麴毒素,p53突變,src和edn1的致癌作用及其協同效應★ 環狀核苷酸磷酸二酯酶4對LPS/TLR4訊息傳導誘導小鼠巨噬細胞表現IFN-β的影響
★ 抑制環狀核苷酸磷酸二酯酶 3 (PDE3)對 3T3-L1 脂肪細胞內蛋白質表現之影響★ 利用聚乙烯亞胺輸送環狀核苷酸磷酸二酯酶4B之專一性反義寡核苷酸可抑制LPS刺激小鼠巨噬細胞釋放TNF-α
★ PDE4與PDE3抑制劑對膠原蛋白誘發DBA/1小鼠關節炎及釋放發炎激素IFN-γ與IL-17A的協同調控作用★ 環狀核苷酸磷酸二酯酶4B對內毒素誘導巨噬細胞 產生IL-1Ra和樹突細胞表現TLRs之影響 及其對乾癬症生成之潛在角色
★ 環狀核苷酸磷酸二脂酶4B對內毒素刺激小鼠樹突細胞表現NOD1與CXCR4的影響★ Viscolin對不同免疫細胞發炎反應的影響
★ 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響★ 環狀核苷酸磷酸二酯酶4B對於小鼠T細胞功能之調節
★ 巨噬細胞中抑制PDE4對LPS誘導發炎反應之調控★ 環狀核苷酸磷酸二酯酶4對LPS刺激小鼠巨噬細胞產生IL-1Ra之影響
★ 調控小鼠脂肪細胞釋放阻抗素之訊息傳導路徑★ 環狀核苷磷酸二酯酶4對LPS刺激小鼠巨噬細胞產生IP-10之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 樹突細胞(Dendritic cells)為抗原呈現細胞,於先天與後天免疫作用中扮演重要的角色。該細胞在吞噬抗原後會分化為成熟樹突細胞,並藉由細胞表面的趨化受體如CXCR4與CCR7由周邊組織移動至局部淋巴結,以進行抗原專一的T細胞活化。已知在許多發炎細胞中,增加cAMP濃度會抑制多種發炎反應,包含樹突細胞的分化與功能。Type 4 phosphodiesterases (PDE4s)為免疫細胞內主要水解cAMP的酵素,其可藉由調控cAMP濃度與cAMP訊息傳導進而影響多種發炎反應。本實驗室先前研究顯示,PDE4抑制劑rolipram會降低小鼠骨髓細胞分化為未成熟樹突細胞。然而,該作用是由何種PDE4亞型(PDE4A、4B、4C及4D)所調控,以及PDE4亞型是否會參與樹突細胞的成熟分化與免疫功能仍不甚瞭解。為此,本研究首先利用granulocyte-macrophage colony-stimulating factor (GM-CSF)誘導野生型與PDE4基因剔除小鼠骨髓細胞分化為未成熟樹突細胞,以流式細胞儀分析結果顯示,分化九天的野生型CD11c+樹突細胞群達86.8 ± 0.6 %,而剔除PDE4B基因會使CD11c+樹突細胞群顯著下降,但剔除PDE4A與4D則無此抑制作用。再者,於LPS或Ovalbumin (OVA)抗原誘導樹突細胞成熟過程中,以rolipram處理或剔除PDE4各亞型均不會影響樹突細胞的成熟分化(檢測CD11c+CD86+細胞群)。然而,僅剔除PDE4B或以rolipram單獨處理未成熟樹突細胞均會增加CD11c+CD86+細胞群。進一步實驗顯示,於樹突細胞成熟過程中,處理rolipram或剔除PDE4B會促使CD11c+CXCR4+細胞群上升,此結果表示PDE4B在成熟樹突細胞內會抑制CXCR4表現。此外,將PDE4基因剔除鼠的骨髓細胞分化為樹突細胞,再以此細胞與OVA致敏的小鼠脾臟CD4+ T細胞共同培養,結果顯示,在OVA處理下,野生型樹突細胞會使T細胞增生,相同的,剔除PDE4亞型(PDE4A-/-、PDE4B-/-或PDE4D-/-)的樹突細胞對T細胞也有相同的增生作用,此結果表示,PDE4在樹突細胞內不會參與CD4+ T細胞的活化增生。綜合以上結果得知,PDE4B會參與未成熟樹突細胞的分化作用以及成熟樹突細胞中CXCR4的表現。這些結果也為研發PDE4B選擇性抑制劑以治療樹突細胞有關的發炎疾病提供了學理的基礎。
摘要(英) Dendritic cells (DCs) are antigen presenting cells (APCs) that play a crucial role in the innate and adaptive immunity. Upon capturing antigen, DCs migrate from peripheral tissues to local lymphoid organs, differentiate into APCs, and then activate antigen-specific T cells. It is well known that elevation of intracellular cAMP concentration attenuates many inflammatory responses in almost all inflammatory cell types, including DCs. Type 4 phosphodieasterases (PDE4s) are predominant cAMP-hydrolyzing PDEs in immune/inflammatory cells which affect inflammatory responses by regulating intracellular cAMP concentration and cAMP signal pathways. Our previous study showed that the PDE4 inhibitor rolipram significantly downregulated the differentiation of mouse bone marrow (BM) cells into immature dendritic cells (imDCs). However, among the four PDE4 isoforms (PDE4A, 4B, 4C and 4D) which isoform is responsible for this differentiation remained to be delineated. Additionally, it is unclear whether PDE4s are involved in DC maturation and their immune functions. In this study, we first used GM-CSF to induce wild-type and PDE4-deficient mouse bone marrow cells to differentiate into immature DCs (imDCs). Flow cytometry analysis revealed that the wild-type CD11c+ population (i.e. imDC) reached 86.8 ± 0.6 % and ablation of PDE4B, but not of PDE4A or PDE4D, significantly reduced the imDC population, indicating that the inhibitory effect of rolipram on imDC differentiation is mediated by inhibition of only PDE4B. Contrarily, DC maturation (identified as CD11c+CD86+) induced by lipopolysaccharide (LPS) or the antigen ovalbumin (OVA) was not altered by rolipram or PDE4 ablation. However, the CD11c+CD86+ population was found to be increased when the imDCs were cultured in the presence of rolipram alone or these cells were PDE4B deficient. Moreover, during LPS- or OVA-induced BMDC maturation, rolipram significantly increased the CD11c+CXCR4+ population and this induction of CXCR4+ cells was demonstrated to be mediated by inhibition of PDE4B, but not PDE4A or PDE4D. In a functional study, we found that the ability of mature DCs to activate T cell proliferation was not affected by ablation of PDE4, as demonstrated by coculturing PDE4-deficient DCs and OVA-primed spleen CD4+ T cells in the presence of OVA. Taken together, these findings demonstrate that PDE4B is involved in the differentiation of imDCs and the CXCR4 expression in mDCs. The data also form the experimental basis for the development of PDE4B selective inhibitors for the treatment of inflammatory diseases that are mediated by DCs.
關鍵字(中) ★ 樹突細胞
★ 環狀核苷酸磷酸二酯酶4
關鍵字(英)
論文目次 中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 viii
縮寫檢索表ix
一、緒論 1
1-1樹突細胞及其免疫反應 1
1-2 腺嘌呤環狀核苷酸訊息傳導 2
1-3 cAMP與免疫反應 3
1-4環狀核苷酸磷酸二酯酶(PDEs)的結構與功能4
1-5 PDE4調控免疫反應 6
1-6 C-X-C chemokine receptor type 4 (CXCR4)8
1-7 CXCR4與樹突細胞8
二、研究動機與目的 10
三、材料與方法 11
3-1材料 11
3-1-1實驗小鼠 11
3-1-2 實驗藥品 11
3-2實驗方法 12
3-2-1 C10培養液及樹突細胞與T細胞共同培養液配置 12
3-2-2分離小鼠骨髓細胞 12
3-2-3小鼠骨髓細胞分化成未成熟樹突細胞 13
3-2-4未成熟樹突細胞分化為成熟樹突細胞 14
3-2-5流式細胞儀技術分析 14
3-2-6卵蛋白抗原致敏反應 15
3-2-7小鼠脾臟分離與CD4+ T cell純化 15
3-2-8樹突細胞刺激脾臟CD4+ T 細胞增生反應 16
四、實驗結果 17
4-1剔除PDE4B基因降低小鼠骨髓細胞分化為樹突細胞 17
4-2 PDE4抑制劑在LPS或OVA誘導樹突細胞成熟過程中可降低CD11c+樹突細胞群 17
4-3剔除PDE4B可降低LPS或OVA誘導成熟分化之CD11c+樹突細胞群 18
4-4剔除PDE4B不影響小鼠骨髓細胞分化至成熟樹突細胞 19
4-5 PDE4抑制劑提升LPS或OVA誘導樹突細胞成熟時CD11c+CXCR4+細胞群 20
4-6剔除PDE4B可增加樹突細胞成熟分化時CXCR4的表現及CD11c+CXCR4+細胞群 21
4-7剔除PDE4不影響樹突細胞對CD4+ T細胞的活化增生23
五、討論 24
六、圖與圖解28
參考文獻 41
附圖一 46
參考文獻 Akira, S. 2003. ′Toll-like receptor signaling′, J Biol Chem, 278: 38105-8.
Aronoff, D. M., C. Canetti, C. H. Serezani, M. Luo, and M. Peters-Golden. 2005. ′Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1′, J Immunol, 174: 595-9.
Banchereau, J., and R. M. Steinman. 1998. ′Dendritic cells and the control of immunity′, Nature, 392: 245-52.
Beard, M. B., A. E. Olsen, R. E. Jones, S. Erdogan, M. D. Houslay, and G. B. Bolger. 2000. ′UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions′, J Biol Chem, 275: 10349-58.
Busillo, J. M., and J. L. Benovic. 2007. ′Regulation of CXCR4 signaling′, Biochim Biophys Acta, 1768: 952-63.
Calverley, P. M., K. F. Rabe, U. M. Goehring, S. Kristiansen, L. M. Fabbri, F. J. Martinez, M, and M. study groups. 2009. ′Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials′, Lancet, 374: 685-94.
Castro, A., M. J. Jerez, C. Gil, and A. Martinez. 2005. ′Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors′, Med Res Rev, 25: 229-44.
Clark, G. J., N. Angel, M. Kato, J. A. Lopez, K. MacDonald, S. Vuckovic, and D. N. Hart. 2000. ′The role of dendritic cells in the innate immune system′, Microbes Infect, 2: 257-72.
Conti, M., and J. Beavo. 2007. ′Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling′, Annu Rev Biochem, 76: 481-511.
Corbin, J. D., I. V. Turko, A. Beasley, and S. H. Francis. 2000. ′Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities′, Eur J Biochem, 267: 2760-7.
Delgado-Martin, C., C. Escribano, J. L. Pablos, L. Riol-Blanco, and J. L. Rodriguez-Fernandez. 2011. ′Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells′, J Biol Chem, 286: 37222-36.
Domanska, U. M., R. C. Kruizinga, W. B. Nagengast, H. Timmer-Bosscha, G. Huls, E. G. de Vries, and A. M. Walenkamp. 2013. ′A review on CXCR4/CXCL12 axis in oncology: no place to hide′, Eur J Cancer, 49: 219-30.
Fan Chung, K. 2006. ′Phosphodiesterase inhibitors in airways disease′, Eur J Pharmacol, 533: 110-7.
Feil, C., and H. G. Augustin. 1998. ′Endothelial cells differentially express functional CXC-chemokine receptor-4 (CXCR-4/fusin) under the control of autocrine activity and exogenous cytokines′, Biochem Biophys Res Commun, 247: 38-45.
Francis, S. H., M. A. Blount, and J. D. Corbin. 2011. ′Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions′, Physiol Rev, 91: 651-90.
Gagliardi, M. C., and M. T. De Magistris. 2003. ′Maturation of human dendritic cells induced by the adjuvant cholera toxin: role of cAMP on chemokine receptor expression′, Vaccine, 21: 856-61.
Galgani, M., V. De Rosa, S. De Simone, A. Leonardi, U. D′Oro, G. Napolitani, A. M. Masci, S. Zappacosta, and L. Racioppi. 2004. ′Cyclic AMP modulates the functional plasticity of immature dendritic cells by inhibiting Src-like kinases through protein kinase A-mediated signaling′, J Biol Chem, 279: 32507-14.
Garay, J., J. A. D′Angelo, Y. Park, C. M. Summa, M. L. Aiken, E. Morales, K. Badizadegan, E. Fiebiger, and B. L. Dickinson. 2010. ′Crosstalk between PKA and Epac regulates the phenotypic maturation and function of human dendritic cells′, J Immunol, 185: 3227-38.
Gasperini, S., L. Crepaldi, F. Calzetti, L. Gatto, C. Berlato, F. Bazzoni, A. Yoshimura, and M. A. Cassatella. 2002. ′Interleukin-10 and cAMP-elevating agents cooperate to induce suppressor of cytokine signaling-3 via a protein kinase A-independent signal′, Eur Cytokine Netw, 13: 47-53.
Giembycz, M. A., C. J. Corrigan, J. Seybold, R. Newton, and P. J. Barnes. 1996. ′Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2′, Br J Pharmacol, 118: 1945-58.
Giordano, D., D. M. Magaletti, E. A. Clark, and J. A. Beavo. 2003. ′Cyclic nucleotides promote monocyte differentiation toward a DC-SIGN+ (CD209) intermediate cell and impair differentiation into dendritic cells′, J Immunol, 171: 6421-30.
Gloerich, M., and J. L. Bos. 2010. ′Epac: defining a new mechanism for cAMP action′, Annu Rev Pharmacol Toxicol, 50: 355-75.
Goraya, T. A., and D. M. Cooper. 2005. ′Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives′, Cell Signal, 17: 789-97.
Gupta, S. K., P. G. Lysko, K. Pillarisetti, E. Ohlstein, and J. M. Stadel. 1998. ′Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines′, J Biol Chem, 273: 4282-7.
Hertz, A. L., and J. A. Beavo. 2011. ′Cyclic nucleotides and phosphodiesterases in monocytic differentiation′, Handb Exp Pharmacol: 365-90.
Hespel, C., and M. Moser. 2012. ′Role of inflammatory dendritic cells in innate and adaptive immunity′, Eur J Immunol, 42: 2535-43.
Heystek, H. C., A. C. Thierry, P. Soulard, and C. Moulon. 2003. ′Phosphodiesterase 4 inhibitors reduce human dendritic cell inflammatory cytokine production and Th1-polarizing capacity′, Int Immunol, 15: 827-35.
Houslay, M. D., and G. S. Baillie. 2003. ′The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways′, Biochem Soc Trans, 31: 1186-90.
Jin, S. L., and M. Conti. 2002. ′Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses′, Proc Natl Acad Sci U S A, 99: 7628-33.
Jin, S. L., S. L. Ding, and S. C. Lin. 2012. ′Phosphodiesterase 4 and its inhibitors in inflammatory diseases′, Chang Gung Med J, 35: 197-210.
Jin, S. L., S. Goya, S. Nakae, D. Wang, M. Bruss, C. Hou, D. Umetsu, and M. Conti. 2010. ′Phosphodiesterase 4B is essential for T(H)2-cell function and development of airway hyperresponsiveness in allergic asthma′, J Allergy Clin Immunol, 126: 1252-9 e12.
Jin, S. L., L. Lan, M. Zoudilova, and M. Conti. 2005. ′Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages′, J Immunol, 175: 1523-31.
Jin, S. L., J. V. Swinnen, and M. Conti. 1992. ′Characterization of the structure of a low Km, rolipram-sensitive cAMP phosphodiesterase. Mapping of the catalytic domain′, J Biol Chem, 267: 18929-39.
Jin, S. LCatherine, Yi-Ling Chen, Shiau-Li Ding, Marco Conti, Ciou-Rong Lai, Huan-Chu Lo, Jing-Xing Yang, Hsian-He Hsu, and Chin-Pyng Wu. 2015. ′Phosphodiesterase 4b is essential for lipopolysaccharide-induced CC chemokine ligand 3 production in mouse macrophages′, Journal of Medical Sciences, 35: 111.
Jourdan, P., J. P. Vendrell, M. F. Huguet, M. Segondy, J. Bousquet, J. Pene, and H. Yssel. 2000. ′Cytokines and cell surface molecules independently induce CXCR4 expression on CD4+ CCR7+ human memory T cells′, J Immunol, 165: 716-24.
Kabashima, K., N. Shiraishi, K. Sugita, T. Mori, A. Onoue, M. Kobayashi, J. Sakabe, R. Yoshiki, H. Tamamura, N. Fujii, K. Inaba, and Y. Tokura. 2007. ′CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells′, Am J Pathol, 171: 1249-57.
Kambayashi, T., R. P. Wallin, and H. G. Ljunggren. 2001. ′cAMP-elevating agents suppress dendritic cell function′, J Leukoc Biol, 70: 903-10.
Kammer, G. M. 1988. ′The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response′, Immunol Today, 9: 222-9.
Kenan, Y., T. Murata, Y. Shakur, E. Degerman, and V. C. Manganiello. 2000. ′Functions of the N-terminal region of cyclic nucleotide phosphodiesterase 3 (PDE 3) isoforms′, J Biol Chem, 275: 12331-8.
Kobilka, B. K., and X. Deupi. 2007. ′Conformational complexity of G-protein-coupled receptors′, Trends Pharmacol Sci, 28: 397-406.
Kovala, T., B. D. Sanwal, and E. H. Ball. 1997. ′Recombinant expression of a type IV, cAMP-specific phosphodiesterase: characterization and structure-function studies of deletion mutants′, Biochemistry, 36: 2968-76.
Lenhard, J. M., D. B. Kassel, W. J. Rocque, L. Hamacher, W. D. Holmes, I. Patel, C. Hoffman, and M. Luther. 1996. ′Phosphorylation of a cAMP-specific phosphodiesterase (HSPDE4B2B) by mitogen-activated protein kinase′, Biochem J, 316 ( Pt 3): 751-8.
Li, H. S., C. Y. Yang, K. C. Nallaparaju, H. Zhang, Y. J. Liu, A. W. Goldrath, and S. S. Watowich. 2012. ′The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development′, Blood, 120: 4363-73.
Lim, J., G. Pahlke, and M. Conti. 1999. ′Activation of the cAMP-specific phosphodiesterase PDE4D3 by phosphorylation. Identification and function of an inhibitory domain′, J Biol Chem, 274: 19677-85.
Liu, Y., and G. Shi. 2014. ′Role of G protein-coupled receptors in control of dendritic cell migration′, Biomed Res Int, 2014: 738253.
Loza, M. J., S. Foster, S. P. Peters, and R. B. Penn. 2006. ′Beta-agonists modulate T-cell functions via direct actions on type 1 and type 2 cells′, Blood, 107: 2052-60.
Maldonado-Arocho, F. J., and K. A. Bradley. 2009. ′Anthrax edema toxin induces maturation of dendritic cells and enhances chemotaxis towards macrophage inflammatory protein 3beta′, Infect Immun, 77: 2036-42.
Merad, M., P. Sathe, J. Helft, J. Miller, and A. Mortha. 2013. ′The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting′, Annu Rev Immunol, 31: 563-604.
Moll, H. 2003. ′Dendritic cells and host resistance to infection′, Cell Microbiol, 5: 493-500.
Muradov, H., K. K. Boyd, and N. O. Artemyev. 2004. ′Structural determinants of the PDE6 GAF A domain for binding the inhibitory gamma-subunit and noncatalytic cGMP′, Vision Res, 44: 2437-44.
Omori, K., and J. Kotera. 2007. ′Overview of PDEs and their regulation′, Circ Res, 100: 309-27.
Papp, K., K. Reich, C. L. Leonardi, L. Kircik, S. Chimenti, R. G. Langley, C. Hu, R. M. Stevens, R. M. Day, K. B. Gordon, N. J. Korman, and C. E. Griffiths. 2015. ′Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1)′, J Am Acad Dermatol, 73: 37-49.
Pifferi, S., A. Boccaccio, and A. Menini. 2006. ′Cyclic nucleotide-gated ion channels in sensory transduction′, FEBS Lett, 580: 2853-9.
Rennard, S. I., P. M. Calverley, U. M. Goehring, D. Bredenbroker, and F. J. Martinez. 2011. ′Reduction of exacerbations by the PDE4 inhibitor roflumilast--the importance of defining different subsets of patients with COPD′, Respir Res, 12: 18.
Ricart, B. G., B. John, D. Lee, C. A. Hunter, and D. A. Hammer. 2011. ′Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4′, J Immunol, 186: 53-61.
Rich, T. C., T. E. Tse, J. G. Rohan, J. Schaack, and J. W. Karpen. 2001. ′In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors′, J Gen Physiol, 118: 63-78.
Richter, W., and M. Conti. 2002. ′Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs)′, J Biol Chem, 277: 40212-21.
Sadhu, C., H. J. Ting, B. Lipsky, K. Hensley, L. F. Garcia-Martinez, S. I. Simon, and D. E. Staunton. 2007. ′CD11c/CD18: novel ligands and a role in delayed-type hypersensitivity′, J Leukoc Biol, 81: 1395-403.
Saini, V., A. Marchese, and M. Majetschak. 2010. ′CXC chemokine receptor 4 is a cell surface receptor for extracellular ubiquitin′, J Biol Chem, 285: 15566-76.
Sassone-Corsi, P. 2012. ′The cyclic AMP pathway′, Cold Spring Harb Perspect Biol, 4.
Serezani, C. H., M. N. Ballinger, D. M. Aronoff, and M. Peters-Golden. 2008. ′Cyclic AMP: master regulator of innate immune cell function′, Am J Respir Cell Mol Biol, 39: 127-32.
Sette, C., and M. Conti. 1996. ′Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation′, J Biol Chem, 271: 16526-34.
Shakur, Y., L. S. Holst, T. R. Landstrom, M. Movsesian, E. Degerman, and V. Manganiello. 2001. ′Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family′, Prog Nucleic Acid Res Mol Biol, 66: 241-77.
Skalhegg, B. S., B. F. Landmark, S. O. Doskeland, V. Hansson, T. Lea, and T. Jahnsen. 1992. ′Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3′,5′-cyclic adenosine monophosphate on cell replication in human T lymphocytes′, J Biol Chem, 267: 15707-14.
Villablanca, E. J., V. Russo, and J. R. Mora. 2008. ′Dendritic cell migration and lymphocyte homing imprinting′, Histol Histopathol, 23: 897-910.
Wang, J., E. Guan, G. Roderiquez, V. Calvert, R. Alvarez, and M. A. Norcross. 2001. ′Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages′, J Biol Chem, 276: 49236-43.
指導教授 金秀蓮 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明