博碩士論文 101224009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.239.76.211
姓名 許藝儒(Yi-Ju HSU)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
(Arabidopsis HIT4 is a MOM1-independent regulator which acts on heat-induced reorganization of chromatin and expressed in developmental transitions)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了適應環境變化以生存,植物需演化出相對應的細胞生理調節機制。熱逆境是植物需面臨的環境因子之一。本實驗室先前以正向式遺傳研究法,從ethyl-methane sulfonate (EMS)處理之阿拉伯芥種子中,篩選出一個對熱逆境敏感的突變植株,命名為heat-intolerant 4-1 (hit4-1)。後續研究發現,HIT4蛋白質的功能,在於調節熱逆境所誘導的大規模染色質構型重組,並使原本轉錄靜默(transcriptional gene silencing, TGS)的基因座再活化。是以hit4突變,熱誘導活化TGS會被抑制。目前已知,熱誘導活化TGS的現象,不是經由DNA序列甲基化程度的改變而引起。而阿拉伯芥morpheus’ molecule 1 (mom1) 突變株,則能在不改變DNA甲基化程度的前提下,釋放特定原本靜默的TGS基因。所以,同樣是無涉於DNA甲基化,但MOM1帶有TGS維持者的角色,HIT4則是在特殊狀態下,推動釋放TGS。為了解HIT4和MOM1的關係,本論文使用hit4-1/mom1雙突變株,與hit4-1及mom1進行比較。結果發現,MOM1與HIT4,是經由兩條不同的路徑,來調節TGS。為進一步瞭解HIT4如何調節熱誘導染色質中心消散,吾人觀察HIT4-GFP轉植株,發現HIT4蛋白質於細胞受熱後,在染色質中心尚未消散之前,即從染色質中心轉移到核仁。熱逆境結束後,HIT4則在染色質中心重新形成後,再從核仁回到染色質中心。此外hit4-1突變蛋白質,在細胞受熱後,保有從染色質中心轉移到核仁的能力。此結果表示,HIT4正確的轉移,不足以促使熱誘導染色質中心消散,並暗示有其他分子的參與。此外,吾人的觀察也指出,HIT4基因,在種子的胚胎發育、種子萌芽、幼苗發育與雄配子體時期,有較高的表現。合理推測HIT4在這些時期,可能也扮演促進大規模染色質構型重組,以利不同發育階段所需不同基因的表現。
摘要(英) Plants have evolved various mechanisms to cope with adverse high temperature stress. To understand these mechanisms and identify the underlying genetic determinants, we used a forward genetic approach to screen for ethyl-methane sulfonate mutagenized Arabidopsis mutants that are more thermosensitive than wild type. One of these mutants, hit4-1 (for heat intolerant 4-1) was therefore isolated. Previous research showed that hit4-1 mutation restricted heat-induced large-scale reorganization of chromatin and release of transcriptional gene silencing (TGS) in a DNA methylation independent manner. On the other hand, Arabidopsis morpheus’ molecule 1 (mom1) mutant is known to promote the release of specific TGS loci without alternation in the level of DNA methylation. To understand the relationship between the function of HIT4 and MOM1 in TGS regulation, hit4-1/mom1 double mutant was made and its TGS status was compared to those of hit4-1 and mom1. The results showed that HIT4 controls a DNA methylation-independent TGS regulatory pathway which is different from that controlled by MOM1. Meanwhile, to understand the regulatory function of HIT4 in heat-induced decondensation of chromocenter, HIT4-GFP transgenic plant was utilized to track the fate of HIT4 under heat stress treatment. Results showed that HIT4 relocated from chromocenter to nucleolus before decondensation of chromocenter occurred. Besides, hit4-1 mutant protein maintained the ability to relocate from chromocenter to nucleolus under heat stress treatment, implying that correct relocalization of HIT4 alone was insufficient to promote heat-induced decondensation of chromocenters. Additionally, HIT4 promoter driven GUS reporter gene analysis revealed that HIT4 was highly expressed in male gametophyte and during the stages of seed maturation, seed germination and post-germinative seedling growth. It is plausible to postulate that HIT4 may involve in large-scale chromatin reconfiguration for genes that are required for these developmental stages to be expressed.
關鍵字(中) ★ 阿拉伯芥
★ 熱逆境
★ 染色質中心消散
★ 轉錄靜默
關鍵字(英) ★ Arabidopsis thaliana
★ heat stress
★ HEAT-INTOLERANT 4 (HIT4)
★ MORPHEUS’ MOLECULE 1 (MOM1)
★ chromocenter decondensation
★ transcriptional gene silencing
★ reorganization of chromatin
論文目次 摘要 I
Abstract II
致謝 III
總目錄 IV
圖目錄 VII
表目錄 VIII
一、緒  論 1
1-1 研究背景與緣起 1
1-2 研究目的與內容 4
二、研究內容與方法 6
2-1 實驗材料製備 6
2-1-1 植物材料來源 6
2-1-2 植物的生長條件 6
2-1-3 螢光轉植株製備 7
2-1-4 構築原生質體轉殖用之質體 9
2-1-5 pDW137- HIT4 promoter轉植株的製備 9
2-2 實驗方法 10
2-2-1 植物的熱逆境條件 10
2-2-2 Quantitative real-time PCR (qPCR)的基因表現分析 11
2-2-3 螢光染劑DAPI (4’, 6-diamidino-2-phenylindole) 染色 12
2-2-4 阿拉伯芥原生質體製備及轉殖 12
2-2-5 報導基因GUS (β-glucuronidase) 染色實驗 13
三、結  果 14
3-1 野生型、hit4-1、mom1、hit4-1/mom1植株熱逆境處理後性狀之觀察 14
3-1-1 熱誘導TGS loci的活化情形 14
3-1-2 觀察熱逆境下的染色質中心 15
3-1-3 先天耐熱性測試 16
3-2 處理不同熱逆境觀察HIT4在細胞內的位置 16
3-2-1 長時間熱逆境 16
3-2-2 熱休克逆境 17
3-2-3 HIT4-GFP進行熱逆境處理時位在核仁 17
3-2-4 突變蛋白hit4-1-GFP與正常蛋白HIT4-GFP加熱時的比較 17
3-3 HIT4在不同熱逆境處理完後的位置及染色質中心回復情形 18
3-3-1 長時間熱逆境加熱12小時後回到室溫生長的實驗結果 18
3-3-2 熱休克逆境加熱15分鐘後回到室溫生長的實驗結果 19
3-3-3 不同長時間熱逆境加熱後回到室溫3天的結果 19
3-3-4 不同熱休克逆境加熱後回到室溫3天的結果 20
3-4 HIT4在開花時期與花粉管內的表現 20
3-5 HIT4在種子發育、成熟、萌芽及幼苗生長階段的表現 21
四、討  論 23
4-1 MOM1與HIT4性狀探討及功能的比較 23
4-2 HIT4在細胞內扮演的角色與蛋白質之功能探討 25
4-3 HIT4在生長階段的各個轉換有所表現 27
4-4 結語 30
五、參考文獻 31
六、附  錄 53
附錄一、hit4-1與hit1-1、hit2、hsp101耐熱性之比較。 53
附錄二、mCherry-HIT4及MOM1-GFP共同轉殖到原生質體之結果 54
附錄三、處理後天耐熱性之熱逆境時染色質中心的消散與HIT4在細胞內的位置 55
參考文獻 1. Amedeo P, Habu Y, Afsar K, Scheid OM, Paszkowski J (2000) Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405:203-206.
2. Barneche F, Steinmetz F, Echeverrı́a M (2000) Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. Journal of Biological Chemistry 275:27212-27220.
3. Benoit M, Layat E, Tourmente S, Probst AV (2013) Heterochromatin dynamics during developmental transitions in Arabidopsis — a focus on ribosomal DNA loci. Gene 526:39-45.
4. Cai S, Lashbrook CC (2008) Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiology 146:1305-1321.
5. Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O (2014) How a retrotransposon exploits the plant′s heat stress response for Its activation. PLoS Genetics 10:e1004115.
6. Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. The Plant Cell 20:1760-1774.
7. Chang W-L (2011) Identification, characterization and gene mapping of Arabidopsis thaliana hit3 and et Mutants. In: Department od Life Sciences, vol. Master, p 76 Taoyuan, Taiwan(R.O.C): National Centural University.
8. Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist 182:175-187.
9. Clarke SM, Mur LAJ, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal 38:432-447.
10. Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal 16:735-743.
11. Da Silva EAA, Toorop PE, Van Lammeren AAM, Hilhorst HWM (2008) ABA inhibits mmbryo cell expansion and early cell division events during coffee (Coffea arabica ‘Rubi’) seed germination. Annals of Botany 102:425-433.
12. Del Prete S, Arpón J, Sakai K, Andrey P, Gaudin V (2014) Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenetic and Genome Research 143:28-50.
13. Dundr M (2012) Nuclear bodies: multifunctional companions of the genome. Current Opinion in Cell Biology 24:415-422.
14. Fransz P, Soppe W, Schubert I (2003) Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res 11:227-240.
15. Gendrel A-V, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871-1873.
16. Goodrich J (1998) Plant development: Medea′s maternal instinct. Current Biology 8:R480-R484.
17. Habu Y (2010) Epigenetic silencing of endogenous repetitive sequences by MORPHEUS’ MOLECULE1 in Arabidopsis thaliana. Epigenetics 5:562-565.
18. Houben A, Kumke K, Nagaki K, Hause G (2011) CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L.). Chromosome Res 19:471–480.
19. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115-119.
20. Jarvis P, Chen L-J, Li H-m, Peto CA, Fankhauser C, Chory J (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282:100-103.
21. Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253-270.
22. Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small Interfering RNA and histone modification. PLoS Biology 1:e67.
23. Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science 6:267.
24. Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters 2:014002.
25. Mathieu O, Jasencakova Z, Vaillant I, Gendrel A-V, Colot V, Schubert I, Tourmente S (2003) Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. The Plant Cell 15:2929-2939.
26. Matsunaga W, Kobayashi A, Kato A, Ito H (2012) The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana. Plant and Cell Physiology 53:824-833.
27. McCormick S (1993) Male gametophyte development. The Plant Cell 5:1265-1275.
28. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiologia Plantarum 133:481-489.
29. Morimoto M, Boerkoel C (2013) The role of nuclear bodies in gene expression and disease. Biology 2:976-1033.
30. Pandey R, Müller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research 30:5036-5055.
31. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. The Plant Cell 22:3118-3129.
32. Rakitina DV, Taliansky M, Brown JWS, Kalinina NO (2011) Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Research 39:8869-8880.
33. Scholten S, Lörz H, Kranz E (2002) Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. The Plant Journal 32:221-231.
34. Scott MS, Ono M (2011) From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie 93:1987-1992.
35. She W, Baroux C (2015) Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Frontiers in Plant Science 6:294.
36. Slotkin RK, Vaughn M, Tanurdžic M, Borges F, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461-472.
37. Steimer A, Amedeo P, Afsar K, Fransz P, Scheid OM, Paszkowski J (2000) Endogenous targets of transcriptional gene silencing in Arabidopsis. The Plant Cell 12:1165-1178.
38. Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science 12:301-309.
39. Tessadori F, Schulkes RK, Driel Rv, Fransz P (2007) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. The Plant Journal 50:848-857.
40. Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I (2010) Stress-induced activation of heterochromatic transcription. PLoS Genetics 6:e1001175.
41. Vaillant I, Paszkowski J (2007) Role of histone and DNA methylation in gene regulation. Current Opinion in Plant Biology 10:528-533.
42. Wang L-C, Tsai M-C, Chang K-Y, Fan Y-S, Yeh C-H, Wu S-J (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany 62:3609-3620.
43. Wang L-C, Wu J-R, Chang W-L, Yeh C-H, Ke Y-T, Lu C-A, Wu S-J (2013) Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. Journal of Experimental Botany 64:1689-1701.
44. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9:244-252.
45. Wu J-R (2012) Gene mapping of Arabidopsis thaliana HS29 mutant and the study of ET participating in heat-tolerance mechanism. In: Department of Life Sciences, vol. Master, p 86 Taoyuan, Taiwan(R.O.C): National Centural University.
46. Zhang L, Hu Y, Yan S, Li H, He S, Huang M, Li L (2012) ABA-mediated inhibition of seed germination is associated with ribosomal DNA chromatin condensation, decreased transcription, and ribosomal RNA gene hypoacetylation. Plant Mol Biol 79:285-293.
指導教授 吳少傑(Shaw-Jye WU) 審核日期 2015-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明