博碩士論文 101224020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.16.47.14
姓名 連珮君(Pei-Jyun Lian)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
(Analysis of the interaction between OsRZFP34, a rice RING zinc-finger protein, with its up-regulated proteins)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
★ 受熱與ABA調控基因AtRZFP33之生理功能分析★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析
★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析
★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) RING 鋅手指蛋白質 (RZFPs) 在植物生長過程、生物及非生物逆境調控上扮演重要的角色,實驗室先前依據 oligo microarray 實驗篩選出水稻中受高溫及 ABA 誘導的 RZFP 基因,我們稱之為 OsRZFP34。此外,在生理功能研究上發現 OsRZFP34可能參與蒸散冷卻作用並且具有調控 Ca2+ 感應、K+ 調節、ABA 反應等與水稻氣孔開啟過程相關基因表現的功能 (Hsu et al., 2014)。因此我們進一步探討 OsRZFP34 與攜鈣素結合蛋白質 OsCaMBP (RAP-DB 基因編號:Os12g0556200)、鉀離子運輸蛋白質OsHAK5 (RAP-DB 基因編號:Os01g0930400)、ABA 反應轉錄因子 OsWRKY80 (RAP-DB基因編號:Os09g0481700) 三者間的蛋白質交互作用並研究 OsRZFP34 調控氣孔開啟的相關機制。首先,我們利用洋蔥表皮短暫表現系統觀察蛋白質表現位置並利用雙分子螢光互補實驗 (Bimolecular fluorescence complementation; BiFC) 分析 OsRZFP34 與三個蛋白質之間的交互作用。由綠螢光蛋白質6 (green fluorescent protein 6; GFP6) 表現位置實驗之結果顯示 OsCaMBP-GFP6 及 OsWRKY80-GFP6 融合蛋白質主要表現在細胞核中;而 OsHAK5-GFP6 融合蛋白質則表現於細胞膜上,此結果與 Horie et al., 2011 文獻相符。根據 BiFC 分析結果發現 OsRZFP34 能夠與 OsCaMBP 及 OsWRKY80 產生蛋白質交互作用且僅於細胞核中,亦能夠與 OsHAK5 於細胞核及細胞膜上產生蛋白質交互作用;反之,當 OsRZFP34 與 OsHAK5 於高溫逆境下產生的蛋白質交互作用則集中於細胞膜上。接著我們利用對 Ca2+ 敏感的螢光染劑 Fluo-3/AM 偵測保衛細胞於高溫、ABA、H2O2、Ca2+、K+ 等條件處理後保衛細胞中 [Ca2+]cyt。由實驗結果發現經過逆境處理後 OsRZFP34 過量表現轉殖株中保衛細胞的 [Ca2+]cyt 低於 WT。綜合以上結果顯示 OsRZFP34 能與 OsCaMBP、OsHAK5、OsWRKY80 產生蛋白質交互作用,並透過改變保衛細胞中 [Ca2+]cyt 進而影響水稻氣孔開啟。
摘要(英) RING zinc-finger proteins (RZFPs) are known to be essential in the regulation of plant processes, including responses to biotic and abiotic stress. By oligo microarray expression profiling, we identified a rice RZFP gene, OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. Our previous study has shown that OsRZFP34 is involved in transpiration cooling and may modulate the genes implicated in Ca2+ sensing, K+ regulator, and ABA response to control stomata opening in rice (Hsu et al., 2014). Here we further investigate the interaction between OsRZFP34 and a calmodulin binding protein OsCaMBP (RAP-DB accession no. Os12g0556200), a potassium transporter OsHAK5 (RAP-DB accession no. Os01g0930400), or an ABA response transcriptional factor OsWRKY80 (RAP-DB accession no. Os09g0481700) and OsRZFP34-regulated mechanism of stomatal opening. Firstly, we determined subcellular localization of these proteins and used bimolecular fluorescence complementation (BiFC) to analyze the interaction between OsRZFP34 and each of the 3 proteins. The results of green fluorescent protein 6 (GFP6) localization experiment showed that OsCaMBP-GFP6 and OsWRKY80-GFP6 fusion proteins were mainly associated with nucleus, while OsHAK5-GFP6 fusion protein was localized in the plant plasma membrane of onion epidermal cells that corresponded with Horie et al., 2011. By BiFC analysis, we found that our OsRZFP34 physically interacted with OsCaMBP and OsWRKY80 only in the nucleus, and with OsHAK5 in the nucleus and plasma membrane. In contrast, the fluorescent signals for co-expression of OsRZFP34 and OsHAK5 were found on the plasma membrane under high temperature. Then we used the Ca2+-sensitive fluorescent dye Fluo-3/AM to detect the [Ca2+]cyt of guard cells treated with heat, ABA, H2O2, Ca2+, or K+. The results indicated that the guard cells of OsRZFP34-overexpressing plants showed lower [Ca2+]cyt than that of the WT after treatment. Taken together, these results demonstrate that OsRZFP34 can interact with OsCaMBP, OsHAK5, and OsWRKY80 and modulate [Ca2+]cyt of guard cells to regulate stomatal opening in rice.
關鍵字(中) ★ RING 鋅手指蛋白質
★ 水稻 RING 鋅手指蛋白質34
★ 熱逆境
★ 離層酸
★ 氣孔開闔
★ 蛋白質交互作用
關鍵字(英) ★ RING zinc finger proteins
★ OsRZFP34
★ Heat Stress
★ ABA
★ Stomatal movement
★ Protein-protein interaction
論文目次 中文摘要 I
Abstract II
縮寫對照表 VI
緒論 1
植物與環境逆境 1
熱逆境 2
離層酸 (Abscisic acid, ABA) 反應 3
氣孔活動 4
鋅手指蛋白質 (Zinc-finger proteins; ZFP) 5
WRKY 轉錄因子 6
攜鈣素結合蛋白質 (Calmodulin-binding protein; CaMBP) 7
高親合性鉀離子運輸蛋白 (High-affinity K+ transporters; KT/HAK/KUP) 9
研究背景與目的 11
材料與方法 14
結果 33
1. 受 OsRZFP34正向調控基因之表現模式 33
2. 以 qPCR 分析 OsCaMBP, OsHAK5, OsWRKY80 在 HS 及 ABA 逆境之表現模式 34
3. OsCaMBP, OsHAK5, OsWRKY80 於細胞內表現位置分析 35
4. OsCaMBP、OsHAK5、OsWRKY80 與 OsRZFP34 間蛋白質交互作用分析 36
5. OsRZFP34 調控保衛細胞鈣離子濃度分析 38
討論 40
水稻 OsRZFP34 正向調控 OsCaMBP、OsHAK5、OsWRKY80 40
OsRZFP34 可與 OsCaMBP、OsHAK5、OsWRKY80 產生蛋白質交互作用調控氣孔開闔 41
OsRZFP34 可調節 [Ca2+]cyt 影響氣孔開啟 45
參考文獻 48
圖表 58
附錄 69
參考文獻 Amrutha, R. N., Sekhar, P. N., Varshney, R. K., and Kishor, P. B. K. (2007). Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Science 172, 708-721.
An, Z. F., Jing, W., Liu, Y. L., and Zhang, W. H. (2008). Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59, 815-825.
Bartels, S., Anderson, J. C., Besteiro, M. A. G., Carreri, A., Hirt, H., Buchala, A., Metraux, J. P., Peck, S. C., and Ulm, R. (2009). MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in Arabidopsis. Plant Cell 21, 2884-2897.
Besseau, S., Li, J., and Palva, E. T. (2012). WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63, 2667-2679.
Bickerton, P. D., and Pittman, J. K. (2012). Calcium Signalling in Plants. eLS. .
Blatt, M., and Armstrong, F. (1993). K+ channels of stomatal guard cells: Abscisic-acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191, 330-341.
Blatt, M. R. (2000). CELLULAR SIGNALING AND VOLUME CONTROL IN STOMATAL MOVEMENTS IN PLANTS. Annual Review of Cell and Developmental Biology 16, 221-241.
Blatt, M. R., and Grabov, A. (1997). Signalling gates in abscisic acid-mediated control of guard cell ion channels. Physiologia Plantarum 100, 481-490.
Bouche, N., Yellin, A., Snedden, W. A., and Fromm, H. (2005). Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56, 435-66.
Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., OsÓRio, M. L., Carvalho, I., Faria, T., and Pinheiro, C. (2002). How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Annals of Botany 89, 907-916.
Daszkowska-Golec, A., and Szarejko, I. (2013). Open or Close the Gate – Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Front Plant Sci 4, 138.
Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S. T., and Hedrich, R. (2002). Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334-44.
DeFalco, T., Bender, K., and Snedden, W. (2010). Breaking the code: Ca2+ sensors in plant signalling. Biochem. J 425, 27-40.
Deng, X. W., Caspar, T., and Quail, P. H. (1991). cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5, 1172-82.
Ding, Z. J., Yan, J. Y., Xu, X. Y., Yu, D. Q., Li, G. X., Zhang, S. Q., and Zheng, S. J. (2014). Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J 79, 13-27.
Du, L., Yang, T., Puthanveettil, S., and Poovaiah, B. W. (2011). Decoding of Calcium Signal Through Calmodulin: Calmodulin-Binding Proteins in Plants. In "Coding and Decoding of Calcium Signals in Plants" (S. Luan, ed.), pp. 177-233. Springer Berlin Heidelberg.
Du, L. Q., Ali, G. S., Simons, K. A., Hou, J. G., Yang, T. B., Reddy, A. S. N., and Poovaiah, B. W. (2009). Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457, 1154-U116.
Eulgem, T., Rushton, P. J., Robatzek, S., and Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci 5, 199-206.
Freemont, P. S., Hanson, I. M., and Trowsdale, J. (1991). A Novel Cysteine-Rich Sequence Motif. Cell 64, 483-484.
Gajdanowicz, P., Michard, E., Sandmann, M., Rocha, M., Correa, L. G., Ramirez-Aguilar, S. J., Gomez-Porras, J. L., Gonzalez, W., Thibaud, J. B., van Dongen, J. T., and Dreyer, I. (2011). Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci U S A 108, 864-9.
Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann, C., Al-Rasheid, K. A. S., Grill, E., Romeis, T., and Hedrich, R. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proceedings of the National Academy of Sciences 107, 8023-8028.
Gilroy, S., Read, N. D., and Trewavas, A. J. (1990). Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346, 769-771.
Gosti, F., Beaudoin, N., Serizet, C., Webb, A. A. R., Vartanian, N., and Giraudat, J. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11, 1897-1909.
Grabov, A. (2007). Plant KT/KUP/HAK potassium transporters: single family–multiple functions. Annals of Botany 99, 1035-1041.
Grabov, A., and Blatt, M. (1997). Parallel control of the inward-rectifier K+ channel by cytosolic free Ca2+ and pH inVicia guard cells. Planta 201, 84-95.
Gupta, M., Qiu, X., Wang, L., Xie, W., Zhang, C., Xiong, L., Lian, X., and Zhang, Q. (2008). KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280, 437-52.
Hamel, L. P., Nicole, M. C., Sritubtim, S., Morency, M. J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., Martin, G., Mundy, J., Ohashi, Y., Scheel, D., Sheen, J., Xing, T., Zhang, S. Q., Seguin, A., and Ellis, B. E. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11, 192-198.
Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N., and Nakayama, K. I. (2001). U box proteins as a new family of ubiquitin-protein ligases. Journal of Biological Chemistry 276, 33111-33120.
Hedrich, R. (2012). Ion channels in plants. Physiol Rev 92, 1777-811.
Hirayama, T., and Shinozaki, K. (2007). Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12, 343-51.
Hirayama, T., and Umezawa, T. (2010). The PP2C-SnRK2 complex: the central regulator of an abscisic acid signaling pathway. Plant Signal Behav 5, 160-3.
Horie, T., Sugawara, M., Okada, T., Taira, K., Kaothien-Nakayama, P., Katsuhara, M., Shinmyo, A., and Nakayama, H. (2011). Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111, 346-56.
Hsu, K. H., Liu, C. C., Wu, S. J., Kuo, Y. Y., Lu, C. A., Wu, C. R., Lian, P. J., Hong, C. Y., Ke, Y. T., Huang, J. H., and Yeh, C. H. (2014). Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. Plant Mol Biol 86, 125-37.
Humble, G. D., and Raschke, K. (1971). Stomatal Opening Quantitatively Related to Potassium Transport: Evidence from Electron Probe Analysis. Plant Physiol 48, 447-453.
Kang, J., Hwang, J.-U., Lee, M., Kim, Y.-Y., Assmann, S. M., Martinoia, E., and Lee, Y. (2010). PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences 107, 2355-2360.
Karim, M. A., Fracheboud, Y., and Stamp, P. (2000). Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. Journal of Agronomy and Crop Science-Zeitschrift Fur Acker Und Pflanzenbau 184, 217-223.
Katou, S., Kuroda, K., Seo, S., Yanagawa, Y., Tsuge, T., Yamazaki, M., Miyao, A., Hirochika, H., and Ohashi, Y. (2007). A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant and Cell Physiology 48, 332-344.
Khush, G. (1997). Origin, dispersal, cultivation and variation of rice. In "Oryza: From Molecule to Plant" (T. Sasaki and G. Moore, eds.), pp. 25-34. Springer Netherlands.
Kinoshita, T., Nishimura, M., and Shimazaki, K. (1995). Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. The Plant Cell Online 7, 1333-1342.
Kline, K. G., Barrett-Wilt, G. A., and Sussman, M. R. (2010). In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proceedings of the National Academy of Sciences 107, 15986-15991.
Koo, S. C., Choi, M. S., Chun, H. J., Shin, D. B., Park, B. S., Kim, Y. H., Park, H. M., Seo, H. S., Song, J. T., Kang, K. Y., Yun, D. J., Chung, W. S., Cho, M. J., and Kim, M. C. (2009). The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Molecules and Cells 27, 563-570.
Krishna, S. S., Majumdar, I., and Grishin, N. V. (2003). Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31, 532-50.
Kutuzov, M. A., Bennett, N., and Andreeva, A. V. (2001). Interaction of plant protein Ser/Thr phosphatase PP7 with calmodulin. Biochem Biophys Res Commun 289, 634-640.
Laity, J. H., Lee, B. M., and Wright, P. E. (2001). Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11, 39-46.
Larkindale, J., Hall, J. D., Knight, M. R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138, 882-97.
Lebaudy, A., Very, A. A., and Sentenac, H. (2007). K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581, 2357-66.
Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D., and Hetherington, A. M. (1998). Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci U S A 95, 15837-42.
Lee, K., Song, E. H., Kim, H. S., Yoo, J. H., Han, H. J., Jung, M. S., Lee, S. M., Kim, K. E., Kim, M. C., Cho, M. J., and Chung, W. S. (2008). Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. Journal of Biological Chemistry 283, 23581-23588.
Lee, S. C., Lan, W., Buchanan, B. B., and Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences 106, 21419-21424.
Leung, J., Bouvier-Durand, M., Morris, P. C., Guerrier, D., Chefdor, F., and Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448-52.
Levchenko, V., Konrad, K. R., Dietrich, P., Roelfsema, M. R. G., and Hedrich, R. (2005). Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci U S A 102, 4203-4208.
Li, J., Besseau, S., Toronen, P., Sipari, N., Kollist, H., Holm, L., and Palva, E. T. (2013). Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytologist 200, 457-72.
Li, J., Brader, G., Kariola, T., and Palva, E. T. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46, 477-91.
Li, J., Brader, G., and Palva, E. T. (2004). The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16, 319-31.
Li, S., Fu, Q., Chen, L., Huang, W., and Yu, D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233, 1237-1252.
Li, Z., and Thomas, T. L. (1998). PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10, 383-98.
Lim, S. D., Cho, H. Y., Park, Y. C., Ham, D. J., Lee, J. K., and Jang, C. S. (2013). The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64, 2899-914.
Lin, Y., Robbins, J. B., Nyannor, E. K., Chen, Y. H., and Cann, I. K. (2005). A CCCH zinc finger conserved in a replication protein a homolog found in diverse Euryarchaeotes. Journal of Bacteriology 187, 7881-9.
Liu, H. T., Gao, F., Li, G. L., Han, J. L., Liu, D. L., Sun, D. Y., and Zhou, R. G. (2008). The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant Journal 55, 760-773.
Liu, H. T., Li, G. L., Chang, H., Sun, D. Y., Zhou, R. G., and Li, B. (2007). Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell and Environment 30, 156-164.
Liu, L. S., White, M. J., and MacRae, T. H. (1999). Transcription factors and their genes in higher plants - Functional domains, evolution and regulation. European Journal of Biochemistry 262, 247-257.
Lorick, K. L., Jensen, J. P., Fang, S. Y., Ong, A. M., Hatakeyama, S., and Weissman, A. M. (1999). RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96, 11364-11369.
MacRobbie, E. A. (2000). ABA activates multiple Ca(2+) fluxes in stomatal guard cells, triggering vacuolar K(+)(Rb(+)) release. Proc Natl Acad Sci U S A 97, 12361-8.
Marschner, H., and Marschner, P. (2012). "Marschner′s mineral nutrition of higher plants," Academic press.
Maser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., Talke, I. N., Amtmann, A., Maathuis, F. J., Sanders, D., Harper, J. F., Tchieu, J., Gribskov, M., Persans, M. W., Salt, D. E., Kim, S. A., and Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126, 1646-67.
McCormack, E., and Braam, J. (2003). Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologist 159, 585-598.
Mehdy, M. C. (1994). Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol 105, 467-472.
Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-81.
Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F., and Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089-99.
Nagy, R., Grob, H., Weder, B., Green, P., Klein, M., Frelet-Barrand, A., Schjoerring, J. K., Brearley, C., and Martinoia, E. (2009). The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284, 33614-22.
Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Dacey, J. W. H., Nobel, P. S., Smith, S. D., and Winner, W. E. (1987). Stress Physiology and the Distribution of Plants. BioScience 37.
Park, C. Y., Lee, J. H., Yoo, J. H., Moon, B. C., Choi, M. S., Kang, Y. H., Lee, S. M., Kim, H. S., Kang, K. Y., Chung, W. S., Lim, C. O., and Cho, M. J. (2005). WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579, 1545-1550.
Park, G. G., Park, J. J., Yoon, J., Yu, S. N., and An, G. (2010). A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74, 467-78.
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., and Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101, 9971-9975.
Perez, D. E., Hoyer, J. S., Johnson, A. I., Moody, Z. R., Lopez, J., and Kaplinsky, N. J. (2009). BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol 151, 241-252.
Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Seay, M., Gerstein, M., Snyder, M., and Dinesh-Kumar, S. P. (2007). Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104, 4730-5.
R., W., and J., K. (2008). In Planta Visualization of Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC). CSH Protocols 3, pdb prot4995.
Reddy, A. S., Day, I. S., Narasimhulu, S. B., Safadi, F., Reddy, V. S., Golovkin, M., and Harnly, M. J. (2002a). Isolation and characterization of a novel calmodulin-binding protein from potato. J Biol Chem 277, 4206-14.
Reddy, V. S., Ali, G. S., and Reddy, A. S. (2002b). Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277, 9840-52.
Ricachenevsky, F. K., Sperotto, R. A., Menguer, P. K., and Fett, J. P. (2010). Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep 37, 3735-45.
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiol 134, 1683-1696.
Ross, C. A., Liu, Y., and Shen, Q. X. J. (2007). The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49, 827-842.
Rubio, F., Aleman, F., Nieves-Cordones, M., and Martinez, V. (2010). Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K uptake. Physiol Plant 139, 220-8.
Rubio, F., Fon, M., Ródenas, R., Nieves-Cordones, M., Alemán, F., Rivero, R. M., and Martínez, V. (2014). A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiologia Plantarum 152, 558-570.
Sarkar, N. K., Kim, Y.-K., and Grover, A. (2009). Rice sHsp genes: genomic organization and expression profiling under stress and development. Bmc Genomics 10, 393.
Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., Hibi, T., Taniguchi, M., Miyake, H., and Goto, D. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2. 6 protein kinase. Biochem. J 424, 439-448.
Schroeder, J. I., and Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338, 427-430.
Schroeder, J. I., Hedrich, R., and Fernandez, J. M. (1984). Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312, 361-362.
Schroeder, J. I., Kwak, J. M., and Allen, G. J. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327-330.
Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., Larrinoa, I. i. F. d., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., and Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50, 1023-1036.
Shabala, S., and Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiol Plant 133, 651-69.
Shang, Y., Yan, L., Liu, Z.-Q., Cao, Z., Mei, C., Xin, Q., Wu, F.-Q., Wang, X.-F., Du, S.-Y., and Jiang, T. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. The Plant Cell Online 22, 1909-1935.
Sheard, L. B., and Zheng, N. (2009). Plant biology: Signal advance for abscisic acid. Nature 462, 575-6.
Smirnoff, N. (2001). Plant Stress Physiology. In "eLS". John Wiley & Sons, Ltd.
Song, Z. Z., Yang, S. Y., Zuo, J., and Su, Y. H. (2014). Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Biologia Plantarum 58, 649-658.
Stone, S. L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137, 13-30.
Suh, S. J., Wang, Y. F., Frelet, A., Leonhardt, N., Klein, M., Forestier, C., Mueller-Roeber, B., Cho, M. H., Martinoia, E., and Schroeder, J. I. (2007). The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. J Biol Chem 282, 1916-24.
Ulker, B., and Somssich, I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7, 491-8.
Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport. Plant and Cell Physiology 51, 1821-1839.
Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T., and Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106, 17588-93.
van Montfort, R. L., Basha, E., Friedrich, K. L., Slingsby, C., and Vierling, E. (2001). Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Structural & Molecular Biology 8, 1025-1030.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annu Rev Plant Biol 42, 579-620.
Wahid, A., Gelani, S., Ashraf, M., and Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 199-223.
Wan, D., Li, R., Zou, B., Zhang, X., Cong, J., Wang, R., Xia, Y., and Li, G. (2012). Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31, 1269-81.
Wang, D., Amornsiripanitch, N., and Dong, X. N. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2, 1042-1050.
Wang, H., Ma, L. G., Li, J. M., Zhao, H. Y., and Deng, X. W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154-8.
Wang, W., Vinocur, B., and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14.
Wang, W. X., Vinocur, B., Shoseyov, O., and Altman, A. (2000). Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. In "IV International Symposium on In Vitro Culture and Horticultural Breeding 560", pp. 285-292.
Wang, Y., and Wu, W. H. (2013). Potassium Transport and Signaling in Higher Plants. Annual Review of Plant Biology, Vol 64 64, 451-476.
Wegner, L. H. (2014). Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65, 381-93.
Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., and Toriyama, K. (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28, 21-30.
Xiang, Y., Huang, Y. M., and Xiong, L. Z. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144, 1416-1428.
Xu, G. Y., Rocha, P. S., Wang, M. L., Xu, M. L., Cui, Y. C., Li, L. Y., Zhu, Y. X., and Xia, X. (2011). A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234, 47-59.
Yang, T., and Poovaiah, B. W. (2003). Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8, 505-512.
Yang, T., Zhang, S., Hu, Y., Wu, F., Hu, Q., Chen, G., Cai, J., Wu, T., Moran, N., Yu, L., and Xu, G. (2014). The Role of a Potassium Transporter OsHAK5 in Potassium Acquisition and Transport from Roots to Shoots in Rice at Low Potassium Supply Levels. Plant Physiol 166, 945-59.
Yi, H., Yin, J., Liu, X., Jing, X., Fan, S., and Zhang, H. (2012). Sulfur dioxide induced programmed cell death in Vicia guard cells. Ecotoxicol Environ Saf 78, 281-6.
Yoo, J. H., Park, C. Y., Kim, J. C., Heo, W. D., Cheong, M. S., Park, H. C., Kim, M. C., Moon, B. C., Choi, M. S., Kang, Y. H., Lee, J. H., Kim, H. S., Lee, S. M., Yoon, H. W., Lim, C. O., Yun, D. J., Lee, S. Y., Chung, W. S., and Cho, M. J. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. Journal of Biological Chemistry 280, 3697-3706.
Zhang, H., Cui, F., Wu, Y., Lou, L., Liu, L., Tian, M., Ning, Y., Shu, K., Tang, S., and Xie, Q. (2015). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27, 214-27.
Zhang, L., Du, L., and Poovaiah, B. W. (2014). Calcium signaling and biotic defense responses in plants. Plant Signal Behav 9, e973818.
Zhang, W., Zhou, R.-G., Gao, Y.-J., Zheng, S.-Z., Xu, P., Zhang, S.-Q., and Sun, D.-Y. (2009). Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149, 1773-1784.
Zhang, W. H., Rengel, Z., and Kuo, J. (1998). Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant Journal 15, 147-151.
Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H., and Xie, Q. (2007). SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19, 1912-29.
Zhou, Y. P., Duan, J., Fujibe, T., Yamamoto, K. T., and Tian, C. E. (2012). AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis. Plant Mol Biol 79, 333-46.
Zhu, J.-K. (2001). Plant salt tolerance. Trends Plant Sci 6, 66-71.
Zielinski, R. E. (1998). CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology 49, 697-725.
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2015-5-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明