博碩士論文 101225018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.237.51.35
姓名 李宥萱(Yu-hsuan Lee)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Improved Mortality Forecasting Using Augmented Data)
相關論文
★ Structure learning for hierarchical Archimedean copulas★ Sensitivity analysis of credit derivatives
★ Asset Allocation Based on the Black-Litterman and GARCH Models★ 在 Black-Sholes 模型下運用選擇權資料進行動態避險之比較
★ A Dynamic Rebalancing Strategy for Portfolio Allocation★ A Multivariate Markov Switching Model for Portfolio Optimization
★ 基於 Copula 模型的資產配置及台灣股票市場的應用★ Copula連結時間序列應用在失業率下之建模
★ Calibrating the state price densities using TAIEX options★ Estimating intensity processes from Credit Default Swaps
★ Copula連結之天氣資料預測★ Efficient Importance Sampling for Copula Models with Applications
★ 貝氏補值方法應用在行星資料的週期和質量上★ 信用違約交換之定價
★ 利用重點抽樣的有效率選擇權訂價★ A direct method for calculating Greeks under some L
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 死亡率的預測在制定福利政策上扮演了一個十分重要的角色。然而對於老年人口的預測現今的死亡率模型並沒有辦法處理得很好。一個典型的問題就是人口資料的遺失。以台灣為例,由於西元1998年至1997年中死亡人數只統計到94歲,其餘超過94歲的人口資料皆歸類在95+類別中,因此我們無法得知95歲以上每個年齡層真實死亡人數。有鑑於此,在這篇研究中我們提出ㄧ些補遺失值的方法。建構在兩個十分有名的模型,Lee-Carter 模型 (Lee and Carter, 1992) 和修正後的 Age-Period-Cohort 模型 (Renshaw and Haberman, 2006)。並且,我們也比較在模擬的資料與台灣真實資料在交叉驗證上的結果。
摘要(英) Mortality forecasting plays an essential role in designing welfare policies and pricing aged-related financial derivatives. However, most prevailing models do not perform well in mortality forecasting particularly for the elder people. Indeed, the missing mortality data for the elder people is a typical feature in developing countries, because people are shorter-lived in earlier times and hence the mortality is recorded at fewer age categories. For example, in Taiwan, the mortality is recorded up to an age of 95 before 1997, but the mortality is recorded up to an age of 100 afterwards. This paper proposes several methods to augment the missing mortality data based on two famous models: the Lee-Carter model (Lee and Carter, 1992) and the Age-Period-Cohort model (Renshaw and Haberman, 2006). Both simulation and empirical studies demonstrate the improvement in terms of out-of-sample forecasting using a suitable data augmentation technique.
關鍵字(中) ★ 死亡率預測
★ Lee-Carter 模型
★ Age-Period-Cohort 模型
★ 資料補值
★ 遺失值
關鍵字(英)
論文目次 摘 要 i
Abstract ii
誌謝 iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
Chapter 2 Review on forecasting models 4
2.1 Notations 4
2.2 The Lee-Carter Model 6
2.3 The Age-Period-Cohort Model 8
Chapter 3 Methods to impute missing data 11
3.1 The toy method 11
3.2 The weighted method 12
3.3 The two-step method 13
3.4 The MLE method 14
Chapter 4 The implementation of the MLE method 16
4.1 Algorithm under the LC model 17
4.2 Algorithm under the APC model 19
Chapter 5 Simulation studies 23
5.1 Simulation data 23
Chapter 6 Empirical analysis 26
6.1 Exploratory data analysis 26
6.2 Comparisons 36
Chapter 7 Conclusion 39
References 41
參考文獻 Booth, H., J. Maindonald, and L. Smith (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies 56(3), 325-336.
Butt, Z. and S. Haberman (2009). ilc: A collection of R functions for fitting a class of Lee-Carter mortality models using iterative fitting algorithms.Actuarial Research Paper No.190 .
Cairns, A. J., D. Blake, K. Dowd, G. D. Coughlan, D. Epstein, A. Ong, and I. Balevich (2007). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal 13, 1-35.
Hyndman, R. and M. Ullah (2007). Robust forecasting of mortality and fertility rate: A functional data approach. Computational Statistics and Data Anaysis 51, 4942-4956.
Kupper, L. L., J. M. Janis, A. Karmous, and B. G. Greenberg (1985). Statistical Age-Period-Cohort analysis: A review and critique. Journal of Chronic Diseases 811-830, 659-671.
Lee, R. and T. Miller (2001). Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38, 537-549.
Lee, R. D. and L. R. Carter (1992). Modelling and forecasting the time series of US mortality. Journal of the American Statistical Association 87,659-671.
Renshaw, A. and S. Haberman (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38, 556-570.
Tuljapurkar, S., N. Li, and C. Boe (2000). A universal pattern of mortality decline in G7 countries. Nature 405, 789-792.
Wilmoth, J. (1996). Mortality projections for Japan: a comparison of four methods. Health and Mortality Among Elderly Populations, 266-287.
Yang, S. S., J. C. Yue, and H. C. Huang (2010). Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models. Insurance: Mathematics and Economics 46, 254-270.
指導教授 鄧惠文 審核日期 2014-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明