博碩士論文 101225019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.210.23.15
姓名 詹翔豪(Hsiang-Hao Chan)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 串聯系統中元件壽命為指數分配之區間資料的階段加速壽命試驗
(Step-Stress Accelerated Life Tests of Series Systems with Interval Data Under Exponential Lifetime Distributions)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
★ 台灣地區地震資料之經驗貝氏分析★ 颱風降雨量與風速之統計預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在串聯系統中, 任一元件失效, 將導致系統無法運作, 有時無法確知造成系統失效的元件, 即為隱蔽資料。本文討論觀測值為區間資料之串聯系統, 其中各元件壽命服從指數分配且其平均壽命與應力間具對數線性關係, 並服從累積曝露模型。考慮型I 設限的階段加速壽命試驗, 分別在元件壽命分配彼此獨立及具Marshall-Olkin 二元指數分配下, 利用期望值-最大概似演算法及遺失資訊法則求得參數之最大概似估計與其費雪訊息矩陣, 進而得到系統可靠度之相關推論。
摘要(英) High reliability products have longer lifetime under normal environment. Accelerated life tests are
usually used to reduce the experiment time. In a series system, the system fails when any of the
components fails, while the cause of system failure may not be observed which is known as masked
data. In this thesis, we consider the step-stress accelerated life tests for series systems with Type-I
censoring, in which the lifetimes of components are exponentially distributed. We not only consider
those distributions are independent, but also consider the Marshall-Olkin bivariate distribution for
two-components series systems. Assume that there exists log-linear relationship between the mean
lifetime of components and the levels of the environmental stress variables under the cumulative exposure model, and the data analyzed are interval data in the sense only the numbers of failures are observed at the times of changing stress levels. Maximum likelihood inference is developed
incorporated with the EM algorithm as well as the missing information principle to achieving the Fisher information. Simulation study is carried out in the reliability analysis. It shows that the proposed method is more accurate and efficient than the bootstrap method.
關鍵字(中) ★ 群集資料
★ 串聯系統
★ 累積曝露模型
★ 型I 設限
★ 階段加速壽命試驗
★ Marshall-Olkin 二元指數分配
關鍵字(英) ★ Interval data
★ Series system
★ Cumulative exposure model
★ Type-I censor
★ Stepstress accelerated degradation test
★ Marshall-Olkin bi-exponential distribution
論文目次 摘要i
Abstract ii
誌謝iii
目錄iv
表目次vi
第一章緒論1
1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章獨立元件串聯系統之型I 設限階段應力加速壽命試驗6
2.1 模型介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 EM 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 費雪訊息矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 可靠度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 參數變換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第三章具Marshall-Olkin 指數分配串聯系統之群集資料的階段應力加速壽命試驗20
3.1 二元Marshall-Olkin 指數分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 型I 設限階段加速壽命試驗之群集隱蔽資料. . . . . . . . . . . . . . . . . . . . . . 22
3.3 EM 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 費雪訊息矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 可靠度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 參數變換. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
第四章數值分析與模擬研究30
4.1 二元件獨立之串聯系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 二元Marshall-Olkin 指數分配之兩元件串聯系統. . . . . . . . . . . . . . . . . . . . 44
第五章結論與展望63
參考文獻64
附錄附錄一: 獨立元件壽命下參數變換之費雪訊息矩陣67
附錄附錄二: 具相關性模型參數之費雪訊息矩陣69
附錄附錄三: 具相關性模型中參數變換之費雪訊息矩陣71
參考文獻 [1] Bai, D. S., Kim, M. S., and Lee, S. H. (1989). Optimum simple step-stress accelerated life
tests with censoring. IEEE Trans. Reliab., 38, 528–532.
[2] Balakrishnan, N. and Mitra, D. (2012). Left truncated and right censored weibull data and
likelihood inference with an illustration. Computational Statistics and Data Analysis, 56,
4011–4025.
[3] Fan, T. H. and Hsu, T.M. (2011). Statistical inference of a series system with masked data with
correlated log-normal lifetime distributions under type I censoring. International Conference
on Advances in Probability and Statistics-Theory and Applications, December 30, 2011.
[4] Fan, T. H. and Hsu, T. M. (2012). Accelerated life tests of a series system with masked interval
data under exponential lifetime distributions. IEEE Trans. Reliab., 61, 798–808.
[5] Guan, Q. and Tang, Y. (2012). Optimal step-stress test under type I censoring for multivariate
exponential distribution. J. Statist. Plann. Inference, 142, 1908–1923.
[6] Ju, S. K. (2013). Reliability analysis of two-component series system under Marshall-Olkin bi-
variate weibull lifetime distribution. Master Thesis, Graduate Institute of Statistics, National
Central University, Jungli, Taiwan.
[7] Kundo, D. and Dey, A. K. (2009). Estimating the parameters of the Marshall-Olkin bivariate
weibull distribution by EM algorithm. Computational Statistics and Data Analysis, 53, 956–
965.
[8] Li, G. A. (2005). A characterization of the multivariate Marshall-Olkin exponential distribu-
tion and its parameter estimation. Chinese Journal of Engineering Mathematics, 22, 1055–
1062.
[9] Lin, H. H. (2012). Competing risks model of Marshall-Olkin bivariate exponential distribution
under hybrid censoring. Master Thesis, Graduate Institute of Statistics, National Central
University, Jungli, Taiwan.
[10] Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.
Methodological , 44, 226–233.
[11] Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. Journal of the
American Statistical Association, 62, 30–44.
[12] Miller, R. and Nelson, W. (1983). Optimum simple step-stress plans for accelerated life testing.
IEEE Trans. Reliab., 32, 59–65.
[13] Miyakawa, M. (1984). Analysis of incomplete data in competing risks model. IEEE Trans.
Reliab., 33, 293–296.
[14] Mukhopadhyay, C. and Basu, A. P. Bayesian analysis of competing risks: k independent
exponentials. Technical report No.516, Department of Statistics, The Ohio State University.
[15] Mukhopadhyay, C. and Basu, A. P. (1997). Bayesian analysis of incomplete time and cause of
failure data. J. Statist. Plann. Inference, 59, 79–100.
[16] Nelson, W. (1980). Accelerated life testing - step-stress models and data analysis. IEEE Trans.
Reliab., 29, 103–108.
[17] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analyses,
John Wiley Sons, New York.
[18] Sarhan, A. M. (2001). Reliability estimation of components from masked system life data.
Reliability Engineering and System Safety, 74, 107–113.
[19] Usher, J. S. (1996). Weibull component reliability prediction in the presence of masked data.
IEEE Trans. Reliab., 45, 229–232.
[20] Usher, J. S. and Hodgson, T. J. (1988). Maximum likelihood analysis of component reliability
using masked system life-test data. IEEE Trans. Reliab., 37, 550–555.
指導教授 樊采虹 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明