博碩士論文 101226004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.133.159.125
姓名 許元錫(Yuan-Shi Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 同質與異質矽晶太陽電池之電特性與效率比較研究
(The comparative study of electrical and conversion efficiency performance for homo-junction and hetero-junction c-Si solar cells)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以電子迴旋共振化學氣相沉積法(Electron Cyclotron Resonance Chemical Vapor Deposition, ECR-CVD)為主,電漿輔助化學氣相沉積法(Plasma-enhanced chemical vapor deposition, PE-CVD)為輔,來成長製作同質與異質矽晶太陽電池所需的鈍化層及摻雜層,並探討兩者在電特性與轉換效率上的表現。ECR-CVD雖具有沉積速度快、低工作壓力、低離子轟擊且無電極汙染等優點,但因薄膜沉積速率過快,容易造成薄膜具有較多缺陷與孔洞,不利於成長優質鈍化層來製作異質矽晶太陽電池。而PE-CVD則因成膜速率較慢容易控制成長缺陷較少的超薄鈍化膜(厚度~5nm),使利於沉積優良的鈍化層來製作異質矽晶太陽電池。
本研究第一部分會以ECR-CVD沉積同質矽晶太陽電池的射極層與背表面電場層,藉由調變太陽電池的背表面電場層摻雜濃度、射極層氧含量、單晶矽基板種類、與前電極形狀等四種因子,來鑑別同質矽晶太陽電池其電特性與轉換效率的變化。在面積1 cm2的此系列太陽電池中,以使用網版印刷的P型矽晶平面同質結構太陽電池上獲得最佳成果,可得到開路電壓(Open-circuit voltage, VOC) = 0.616 V;短路電流密度(Short-circuit current density, JSC) = 37.4 mA/cm2;填充因子(Fill factor, F.F.) = 75 %;轉換效率(Efficiency) = 17.3 %。
本研究第二部分會先在單晶矽基板上分別以ECR-CVD與PE-CVD沉積氫化非晶矽基鈍化層,然後均以ECR-CVD沉積異質矽晶太陽電池的射極層與背表面電場層,藉以比較不同基板的鈍化層與鈍化層厚度對異質矽晶太陽電池的影響。目前在P型平面矽晶基板上,以利用PE-CVD成長3 nm鈍化層製作而成面積1 cm2的異質接面矽晶太陽電池可得到最佳光電轉換效率:VOC = 0.644 V;JSC = 34 mA/cm2;F.F. = 68 %;Efficiency = 14.8 %。
由上述研究結果-優質鈍化層的加入可使異質接面矽晶太陽電池開路電壓提升,進一步優化此電池的摻雜層電性應可增加其效率,而得以製作成高效率光伏元件。

摘要(英) In this study, ECR-CVD was used for the deposition of high doping silicon thin films and passivation layers, PE-CVD was used for the deposition of passivation layers. These thin films were deposited on single-crystalline silicon substrate to fabricate the homo-junction and hetero-junction c-Si solar cells. The electrical properties and solar cell performance of homo-junction and hetero-junction c-Si solar cells were investigated. ECR-CVD has advantages about high deposition rate, low working pressure, low ion bombardment and no electrode pollution. But high deposition rate makes the thin films more defects and loose structure, these feature are not good for passivation layers in HIT solar cells. Therefore, the better quality passivation layers were deposited by PE-CVD to improve the HIT solar cells.
In the first part, we will modulate the experimental parameters of doping concentration of BSF, oxygen content of emitter, single-crystalline silicon substrate types, and the electrode in homo-junction solar cells to investigate the electrical properties and conversion efficiency. The emitter and back surface field layers of homo-junction solar cell were deposited by ECR-CVD. The characteristics of homo-junction solar cell with screen printing electrode on p-type planar substrate were shown as follow: VOC = 0.616 V, JSC = 37.397 mA/cm2, F.F. = 75 %, efficiency = 17.29 % in the area of 1 cm2.
In second part, the passivation quality on different wafer and the variation of the passivation layer thickness were performed in hetero-junction solar cells. The passivation layer were deposited by ECR-CVD or PE-CVD, the emitter and back surface field layers were deposited by ECR-CVD. In addition, the characteristics of hetero-junction solar cell on p-type planar substrate with 3 nm passivation layer deposited by PE-CVD that were shown as follow: VOC = 0.644 V, JSC = 34.04 mA/cm2, F.F. = 68 %, efficiency = 14.8 % in the area of 1 cm2.
關鍵字(中) ★ 同質矽晶太陽電池
★ 異質矽晶太陽電池
★ 電子迴旋共振化學氣相沉積法
★ 電漿輔助化學氣相沉積法
關鍵字(英) ★ homo-junction c-Si solar cells
★ hetero-junction c-Si solar cells
★ ECR-CVD
★ PE-CVD
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 3
第二章 原理與文獻回顧 5
2.1 太陽電池發電原理 5
2.2 電子迴旋共振化學氣相沉積法沉膜原理 13
2.3 同質矽晶太陽電池介紹 15
2.4 異質矽晶太陽電池介紹 18
第三章 實驗設備與量測機台 20
3.1 矽薄膜沉積設備 20
3.1.1 ECR-CVD沉膜設備 20
3.1.2 PE-CVD沉膜設備 23
3.2 薄膜分析設備 23
3.2.1 橢圓偏振儀(Spectroscopic Ellipsometry) 24
3.2.2 霍爾量測系統(Hall effect sensor) 25
3.3 太陽電池表面抗反射層與電極製程設備 26
3.3.1 離子濺鍍系統(Sputter) 26
3.3.2 電子槍蒸鍍系統(E-gun) 27
3.3.3 網版印刷機台(Screen Print) 28
3.3.4 反應式離子蝕刻機(RIE) 29
3.4 太陽電池量測設備 30
3.4.1 光譜響應量子校率量測系統(IPCE) 30
3.4.2 太陽光模擬器(Solar simulator) 31
3.5 太陽電池製程 32
3.5.1 試片清洗 32
3.5.2 矽薄膜成長 32
3.5.3 太陽電池表面抗反射與電極製程 32
第四章 同質矽晶薄膜太陽電池製備與特性討論 33
4.1 背表面電場層對同質太陽電池的影響 33
4.1.1 改變背表面電場層摻雜濃度對同質太陽電池的影響 33
4.1.2 改變背表面電場層製程微波功率對同質太陽電池的影響 36
4.2 調變射極層氧含量對同質矽晶太陽電池的影響 39
4.3 基板種類對同質矽晶太陽電池的影響 44
4.4 網印電極對同質矽晶太陽電池的影響 48
第五章 異質矽晶太陽電池製備與特性討論 50
5.1 使用ECR-CVD成長之鈍化層厚度對異質矽晶太陽電池的影響 50
5.2 使用PE-CVD成長之鈍化層厚度對異質矽晶太陽電池的影響 53
第六章 結論與未來展望 55
6.1 結論 55
6.1.1 同質矽晶太陽電池 55
6.1.2 異質矽晶太陽電池 56
6.2 未來展望 56
6.2.1 摻雜層調變 56
6.2.2 基板調變 57
參考文獻 58

參考文獻 [1] Maria van der Hoeven, et al., "World Energy Investment Ooulook Special Report", IEA, (2014).
[2] 黃惠良,太陽電池,五南出版社,民國九十七年。
[3] 矽。取自http://zh.wikipedia.org/wiki/%E7%A1%85
[4] Zhao, J. H., et al., "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates." Solar Energy Materials and Solar Cells 65(1-4): 429-435, (2001).
[5] Hassan El Gohary, "Development of Low-Temperature Epitaxial Silicon Films and Application to Solar Cells", (2010).
[6] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles (4e), McGraw-Hill, (2012).
[7] Stuart Lindsay, Introduction to Nanoscience, OUP Oxford, (2009).
[8] Beiser, Concepts of Modern Physics, McGraw-Hill, (2003).
[9] A. Matsuda and K. Tanaka, Thin Solar Film 92,171, (1982).
[10] R. Robertson, D. Hils, H. Chatham, A. Gallagher, "Radical species in argon‐silane discharges" Appl. Phys. Lett. 43(6), 544, (1983)
[11] 陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[12] Rosenits, P., et al., "Epitaxially grown crystalline silicon thin-film solar cells reaching 16.5% efficiency with basic cell process." Thin Solid Films 519(10): 3288-3290, (2011).
[13] Hekmatshoar, B., et al. "Characterization of thin epitaxial emitters for high-efficiency silicon heterojunction solar cells." Applied Physics Letters 101(10), (2012).
[14] Cariou, R., et al., "Thin crystalline silicon solar cells based on epitaxial films grown at 165 degrees C by RF-PECVD." Solar Energy Materials and Solar Cells 95(8): 2260-2263, (2011).
[15] Ji, K. S., et al., "A study of crystallinity in amorphous Si thin films for silicon heterojunction solar cells." Solar Energy Materials and Solar Cells 95(1): 203-206, (2011).
[16] Taguchi, M., et al., "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer." Ieee Journal of Photovoltaics 4(1): 96-99, (2014).
[17] Oh, W. K., et al., "Study on the ITO work function and hole injection barrier at the interface of ITO/a-Si: H(p) in amorphous/crystalline silicon heterojunction solar cells." Materials Research Bulletin 47(10): 3032-3035, (2012).
[18] Kim, S., et al., "Low defect interface study of intrinsic layer for c-Si surface passivation in a-Si:H/c-Si heterojunction solar cells." Thin Solid Films 521: 45-49, (2012).
[19] Gogolin, R., et al., "Silicon heterojunction solar cells: Influence of H-2-dilution on cell performance." Solar Energy Materials and Solar Cells 106: 47-50, (2012).
[20] Lee, S. J., et al., "Effect of hydrogen plasma passivation on performance of HIT solar cells." Solar Energy Materials and Solar Cells 95(1): 81-83, (2011).
[21] Bock, R., et al., "n-type silicon solar cells with surface-passivated screen-printed aluminium-alloyed rear emitter." Physica Status Solidi-Rapid Research Letters 2(6): 248-250, (2008).
[22] Liu, C. S., et al., "High-rate deposition of a-Si:H thin layers for high-performance silicon heterojunction solar cells." Progress in Photovoltaics 21(3): 326-331, (2013).
[23] Cho, Y. S., et al. "Effect of Hydrogen Content in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells." International Journal of Photoenergy, (2013).
[24] D. H. Thang, H. Muta, and Y. Kawai, "Investigation of plasma parameters in 915 MHz ECR plasma with SiH4/H-2 mixtures," Thin Solid Films 516, 4452-4455, (2008).
[25] N. Fujiwara, H. Sawai, M. Yoneda, K. Nishioka, K. Horie, K. Nakamoto, and H. Abe, "High-Performance Electron-Cyclotron Resonance Plasma-Etching with Control of Magnetic-Field Gradient," Jpn J Appl Phys 1 30, 3142-3146, (1991).
[26] S. Samukawa, and T. Nakamura, "Dependence of Electron-Cyclotron Resonance Plasma Characteristics on Magnetic-Field Profiles," Jpn J Appl Phys 2 30, L1330-L1332, (1991).
[27] Fujiwara, H., et al., "Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells." Applied Physics Letters 91(13), (2007).
[28] Banerjee, C., et al., "Fabrication of heterojunction solar cells by using microcrystalline hydrogenated silicon oxide film as an emitter." Journal of Physics D-Applied Physics 41(18), (2008).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明