博碩士論文 101226008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.205.176.85
姓名 侯裕瑋(Yu-Wei Hou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
(Low Temperature Growth and Fabrication of Silicon-based Epitaxial Germanium Films and Photodetectors)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較
★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質★ 熔融法折射式微透鏡陣列之設計製造與檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文是以電子迴旋共振化學氣相沉積法(Electron Cyclotron Resonance Chemical Vapor Deposition, ECR-CVD)於單晶矽基板Si(100)上低溫磊晶成長鍺薄膜並應用其製作光偵測器。鍺相較於矽有較小的能隙及較高的載子遷移率,因此塊材鍺常被應用在矽光電子領域及高效率三五族多接面太陽能電池;吸收光之截止波長可達1550 nm,也可作為近紅外光偵測器。然而鍺基板成本約比矽貴上四倍,不利於往後發展,矽基鍺薄膜發展以取代舊有的鍺基板就越受矚目,但其高溫製程成了製程整合上的種種限制。因此本論文是以ECR-CVD在180 oC的低溫下,於矽晶片上成長磊晶鍺薄膜,並利用熱退火處理改善成膜品質,並將其應用在光偵測器上,作為光主動元件。
本研究將探討不同製程條件下,工作壓力、ECR共振區及氫氣稀釋比對薄膜特性之影響,製程後搭配後退火處理,改善薄膜品質。製程中使用光放射光譜儀(Optical Emission Spectroscopy, OES)監控電漿組成成分及其影響。薄膜特性分別利用橢圓儀、高解析度X光繞射儀(High Resolution X-Ray Diffractometer, HR-XRD)及拉曼光譜儀鑑定薄膜結構品質。最後應用製作成光偵測器,並量測分析光暗電流、響應率及二極體特性曲線。本研究中,在工作壓力30 mTorr、主磁場電流50 A、氫稀釋比(H2/GeH4)100及薄膜厚度控制在100 nm的情況下,XRD量測結果中Ge(400)半高寬為683 arcsec。光偵測器在光波長為850 nm及-1V偏壓下,響應率為0.2 A/W 及,-3V偏壓下為0.42 A/W,此外在光波長為1310 nm及-1V偏壓下。響應率為0.07 A/W 及,-3V偏壓下為0.139 A/W。同時藉由製程參數及後退火處理暗電流密度可改善至1.89 m A/cm2。
摘要(英) In this research, we use the electron cyclotron resonance chemical vapor deposition (ECR-CVD) to grow epitaxial germanium (Ge) thin films on single crystal silicon substrates (c-Si) and applied to the photodetector at a low temperature. Compared to Si, Ge has smaller energy band gap and higher carrier mobility, and therefore the bulk Ge is often used in the field of silicon photonics and high efficiency III-V multi-junction solar cells. The cutoff wavelength of Ge is at 1550 nm, so Ge can be used as a near-infrared photodetector. However, the cost of c-Ge is about 4 times higher than that of c-Si, so in order to reduce the cost, many researches have been doing efforts to grow high quality epitaxial Ge films on silicon substrates to replace c-Ge substrates. In this work, we use ECR-CVD to deposit epitaxial Ge on c-Si at a low temperature of 180 oC and further use rapid thermal annealing (RTA) process to improve epitaxial quality and applied it to the photodetector.
In this investigation, we analyze the effect of different parameters on the films quality. We use optical emission spectroscopy (OES) to in-situ monitor the plasma distribution during film growth and use Ellipsometry (SE), Raman Spectrometer, and X-ray Diffractometer (XRD) to characterize the thin films properties. The result shows that the XRD full width at half maximum (FWHM) of 683 arcsec can be obtained when the film thickness is 100 nm. The responsivity of photodetector in 850 nm light source is 0.2 A/W at -1V and 0.42 A/W at -3V. In 1310 nm light source, the responsivity is 0.07 A/W at -1V and 0.139 A/W at -3V. After annealing, we can reduce the dark current density to 1.89 mA/cm2.
關鍵字(中) ★ 矽基鍺
★ 光偵測器
關鍵字(英) ★ Germanium
★ Photodetector
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 vi 圖目錄 vii 表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
第二章 基本原理及文獻回顧整理 4
2-1 磊晶鍺薄膜沉積機制 4
2-2 磊晶鍺成長技術 5
2-3 磊晶鍺成長方法 7
2-4 光偵測器工作原理 8
2-5 矽基鍺光偵測器應用 10
2-5-1 P-I-N半導體 12
2-5-2 金屬-半導體(Metal-Semiconductor, MS) 14
第三章 實驗步驟、設備及分析儀器 15
3-1 實驗步驟 15
3-2 製程設備 16
3-2-1 ECR-CVD 17
3-2-2 快速退火爐(Arts-RTA) 18
3-2-3 直流離子濺鍍機(DC Sputter) 19
3-2-4 電子槍蒸鍍系統(E-Gun) 21
3-2-5 反應離子蝕刻機(Reactive-ion etching) 21
3-2-6 光罩對準曝光機 22
3-3 分析儀器 22
3-3-1 光放射光譜儀(Optical Emission Spectroscopy, OES) 22
3-3-2 高解析度X光繞射儀(X-Ray Diffractometer, XRD) 24
3-3-3 拉曼光譜儀(Raman Spectrometer) 25
3-3-4 橢圓偏振儀(Spectroscopy Ellipsometry, SE) 25
3-3-5 Keithley2400 26
第四章 薄膜及光電元件製備之結果討論 27
4-1 矽基鍺薄膜製備與矽基鍺虛擬基板 27
4-1-1工作壓力之影響 27
4-1-2 主磁場之影響 34
4-1-3 氫氣稀釋比之影響 40
4-1-4 鍺薄膜缺陷密度 45
4-1-5 熱退火實驗 47
4-1-6 矽基鍺應用於砷化鎵磊晶薄膜 48
4-2 矽基鍺應用於光電元件 50
4-2-1 P-I-N與MS結構特性比較 51
4-2-2 P-N與P-I-N暗電流分析比較 53
4-2-3 熱退火對暗電流之影響 54
4-2-4 優化後之矽基鍺光偵測器 55
第五章 結論與未來展望 56
5-1 結論 56
5-2 未來展望 56
參考文獻 58
參考文獻 1. S. Jongthammanurak, et al., "Large electro-optic effect in tensile strained Ge-on-Si films," Applied Physics Letters, vol. 89, Oct 16 2006.
2. D. Ahn, et al., "High performance, waveguide integrated Ge photodetectors," Optics Express, vol. 15, pp. 3916-3921, Apr 2 2007.
3. Y. Takada, et al., "Effect of Mesa Shape on Threading Dislocation Density in Ge Epitaxial Layers on Si after Post-Growth Annealing," Japanese Journal of Applied Physics, vol. 49, 2010.
4. Y. Ishikawa and K. Wada, "Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future," Ieee Photonics Journal, vol. 2, pp. 306-320, Jun 2010.
5. M. T. Currie, et al., "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing," Applied Physics Letters, vol. 72, pp. 1718-1720, Apr 6 1998.
6. C. L. Andre, et al., "Investigations of high-performance GaAs solar cells grown on Ge-Si1-xGex-Si substrates," Ieee Transactions on Electron Devices, vol. 52, pp. 1055-1060, Jun 2005.
7. L. M. Giovane, et al., "Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers," Applied Physics Letters, vol. 78, pp. 541-543, Jan 22 2001.
8. A. Matsuda, et al., "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Solar Energy Materials and Solar Cells, vol. 78, pp. 3-26, Jul 2003.
9. Y. Ishikawa and K. Wada, "Germanium for silicon photonics," Thin Solid Films, vol. 518, pp. S83-S87, Jan 1 2010.
10. J. Michel, et al., "High-performance Ge-on-Si photodetectors," Nature Photonics, vol. 4, pp. 527-534, Aug 2010.
11. S. Luryi, A. Kastalsky, and J. C. Bean, "New infrared detector on a silicon chip," Ieee Trans on electr devices 31, 1135-1139 (1984).
12. H. C. Luan, et al., "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters, vol. 75, pp. 2909-2911, Nov 8 1999.
13. D. P. Malta, et al., "Low-Defect-Density Germanium on Silicon Obtained by a Novel Growth Phenomenon," Applied Physics Letters, vol. 60, pp. 844-846, Feb 17 1992.
14. Y. Ohmachi, et al., " The heteroepitaxy of Ge on Si(100) by vacuum evaporation," Ieee Journal of magazines, vol. 54, pp. 5466-5469, Sep 1983.
15. Jungwoo Oh, "Planar Ge Photodetectors on Si Substrates for Si/Ge-based Optical Receivers," The University of Texas at Austin December, 2004
16. V. Sorianello, et al., "Low-temperature germanium thin films on silicon," Optical Materials Express, vol. 1, pp. 856-865, Sep 1 2011.
17. R. Ichikawa, et al., "Germanium as a Material to Enable Silicon Photonics," Silicon Photonics Ii: Components and Integration, vol. 119, pp. 131-141, 2011.
18. J. H. Hsieh, et al., "Deposition and characterization of a- and mu c-Si:H thin films by ICP-CVD system with internal antennas," Surface & Coatings Technology, vol. 231, pp. 550-556, Sep 2013.
19. D. Chen, et al., "Ultralow temperature ramping rate of LT to HT for the growth of highquality Ge epilayer on Si (100) by RPCVD," Applied Surface Science, vol. 299, pp. 1-5, Apr 30 2014.
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明