博碩士論文 101226014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.141.200.180
姓名 鄭慶偉(Ching-wei Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 有機分子微共振腔光子與激子強耦合之研究
(Research on polariton in strongly coupled organic semiconductor microcavities)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要研究以DEDOC花青染料分子製作具有J-aggregate分子排列結構之高吸收薄膜,找出最理想的製程方式,使其具有最佳的吸收與發光特性。並觀察將DEDOC J-aggregate薄膜置入微共振腔內形成光子與激子強耦合的現象。
在製備DEDOC J-aggregate薄膜上,我們嘗試了layer-by-layer assembly與旋轉塗佈的方式,並對其光學性質與薄膜物理結構進行分析與探討。發現以layer-by-layer assembly製作之J-aggregate薄膜,結構的緻密性與均勻性較佳,因此在峰值吸收係數與發光均勻性上,比旋轉塗佈的J-aggregate薄膜好。根據薄膜製備分析的結論,我們將優化的DEDOC薄膜置入金屬-介電質反射鏡共振腔中,利用多角度反射頻譜與多角度光激螢光頻譜的量測,在室溫下觀測到polariton的能態,即光子與激子強耦合的發生。我們並比較量測結果與理論的二階模型,驗證polariton能態的產生。
摘要(英) We present a method to fabricate high-absorption thin films composed of DEDOC cyanine dyes, a type of J-aggregates, that will yield the most favorable absorption and emission properties. By placing the thin films in a microcavity, the photon-exciton strong-coupling phenomenon is able to be observed.
The physical structures and optical properties of the J-aggregate thin films fabricated via both layer-by-layer assembly and spin coating are analyzed. We find that the layer-by-layer assembly method produces the most ideal absorption and uniform emissions when compared to the spin coating method, due to the structure and densification of the thin films. Based on the fabrication results, the modifying DEDOC thin films are placed in a metal-dielectric mirror microcavity, and measured by both angle-resolved reflection spectrum and angle-resolved photoluminescence spectrum to observe the polariton states at room temperature. Lastly, the reflection and emission measurements are compared with the two level model prediction as evidence for the polariton existence.
關鍵字(中) ★ 光子與激子強耦合
★ 微共振腔
關鍵字(英) ★ polariton
★ microcavities
論文目次 目錄
摘要 iv
Abstract v
誌謝 vi
第一章 緒論 1
1-1 研究背景 1
1-2 有機材料與光強耦合研究發展 5
1-3 研究動機 8
第二章 基礎原理 9
2-1 微共振腔的共振模態與色散關係 9
2-2 微共振腔內光與激子強耦合 11
2-3 薄膜理論 14
2-3-1 垂直入射之光學導納定義 14
2-3-2 單介面之反射與穿透 17
2-3-3 單層膜之反射與穿透 18
2-3-4 多層膜之反射與穿透 21
2-3-5 斜向入射之修正 22
2-4 Kramers-Kronig Relation 23
2-5 J-aggregate染料分子 25
2-6 Layer By Layer Assembly 29
第三章 實驗架構 31
3-1 實驗儀器 31
3-1-1 雙電子槍蒸鍍系統 31
3-1-2 旋轉塗佈機 32
3-2 量測儀器 33
3-2-1 紫外光/可見光光譜儀 33
3-2-2 橢偏儀 33
3-2-3 原子力顯微鏡 35
第四章 DEDOC高吸收薄膜特性與製備 36
4-1 DEDOC高吸收薄膜layer-by-layer assembly製備 36
4-2 layer-by-layer assembly之DEDOC薄膜光學特性 40
4-3 layer-by-layer assembly之DEDOC薄膜物理特性 43
4-4 layer-by-layer assembly之DEDOC薄膜光電特性影響 45
4-5 DEDOC高吸收薄膜spin coating 製備 48
4-6 Spin coating之DEDOC薄膜光學特性 50
4-7 Spin coating之DEDOC薄膜物理特性 53
4-8 不同DEDOC薄膜製程之薄膜光激螢光影像 55
第五章 微共振腔內光子與激子強耦合現象 57
5-1 Polariton微共振腔設計與製作 57
5-2 Polariton微共振腔變角度反射量測與分析 61
5-3 Polariton微共振腔光致發光量測 66
第六章 結論與未來工作 72
文獻參考 74

參考文獻 [1] R. Eisberg and R. Resnick, Quantum physics: John Wiley New York, 1974.
[2] A. Imamog, R. Ram, S. Pau, and Y. Yamamoto, "Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers," Physical Review A, vol. 53, p. 4250, 1996.
[3] H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, "Polariton lasing vs. photon lasing in a semiconductor microcavity," Proceedings of the National Academy of Sciences, vol. 100, pp. 15318-15323, 2003.
[4] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, et al., "Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities," Physical review letters, vol. 100, p. 047401, 2008.
[5] M. Choi, K.-C. Je, S.-Y. Yim, and S.-H. Park, "Relative strength of the screened Coulomb interaction and phase-space filling on exciton bleaching in multiple quantum well structures," Physical Review B, vol. 70, p. 085309, 2004.
[6] R. Houdré, J. Gibernon, P. Pellandini, R. Stanley, U. Oesterle, C. Weisbuch, et al., "Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons," Physical Review B, vol. 52, p. 7810, 1995.
[7] D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, et al., "Polariton light-emitting diode in a GaAs-based microcavity," Physical Review B, vol. 77, p. 113303, 2008.
[8] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, p. 3314, 1992.
[9] C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, et al., "An electrically pumped polariton laser," Nature, vol. 497, pp. 348-52, May 16 2013.
[10] A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, et al., "Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser," Physical Review Letters, vol. 107, 2011.
[11] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. Keeling, et al., "Bose-Einstein condensation of exciton polaritons," Nature, vol. 443, pp. 409-14, Sep 28 2006.
[12] D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers vol. 172: Springer, 2012.
[13] D. Bajoni, "Polariton lasers. Hybrid light–matter lasers without inversion," Journal of Physics D: Applied Physics, vol. 45, p. 313001, 2012.
[14] S. Forget and S. Chénais, Organic Solid-state Lasers: Springer, 2013.
[15] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55, 1998.
[16] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, p. 3316, 1999.
[17] C. F. Klingshirn, C. Klingshirn, and C. Klingshirn, Semiconductor optics vol. 3: Springer, 2007.
[18] V. Agranovich, M. Litinskaia, and D. Lidzey, "Cavity polaritons in microcavities containing disordered organic semiconductors," Physical Review B, vol. 67, 2003.
[19] J. Hopfield, "Theory of the contribution of excitons to the complex dielectric constant of crystals," Physical Review, vol. 112, p. 1555, 1958.
[20] D. Lidzey, A. Fox, M. Rahn, M. Skolnick, V. Agranovich, and S. Walker, "Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation," Physical Review B, vol. 65, p. 195312, 2002.
[21] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton Bose-Einstein condensation," Reviews of Modern Physics, vol. 82, pp. 1489-1537, 2010.
[22] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, "Bose-Einstein condensation of microcavity polaritons in a trap," Science, vol. 316, pp. 1007-10, May 18 2007.
[23] V. Savona, L. Andreani, P. Schwendimann, and A. Quattropani, "Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes," Solid State Communications, vol. 93, pp. 733-739, 1995.
[24] 李正中, 薄膜光學與鍍膜技術, 第七版. 新北市: 藝軒圖書出版社, 2012.
[25] V. Lucarini, Kramers-Kronig relations in optical materials research: Springer, 2005.
[26] R. Nitsche and T. Fritz, "Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: Application to organic semiconductors," Physical Review B, vol. 70, p. 195432, 2004.
[27] E. E. Jelley, "Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride," Nature, vol. 139, pp. 631-632, 1937.
[28] E. E. Jelley, "Spectral absorption and fluorescence of dyes in the molecular state," Nature, vol. 138, pp. 1009-1010, 1936.
[29] F. Würthner, T. E. Kaiser, and C. R. Saha‐Möller, "J‐Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials," Angewandte Chemie International Edition, vol. 50, pp. 3376-3410, 2011.
[30] G. Scheibe, L. Kandler, and H. Ecker, "Polymerisation und polymere Adsorption als Ursache neuartiger Absorptionsbanden von organischen Farbstoffen," Naturwissenschaften, vol. 25, pp. 75-75, 1937.
[31] V. V. Egorov and M. V. Alfimov, "Theory of the J-band: from the Frenkel exciton to charge transfer," Physics-Uspekhi, vol. 50, pp. 985-1029, 2007.
[32] A. Eisfeld and J. S. Briggs, "The J- and H-bands of organic dye aggregates," Chemical Physics, vol. 324, pp. 376-384, 2006.
[33] R. Iler, "Multilayers of colloidal particles," Journal of Colloid and Interface Science, vol. 21, pp. 569-594, 1966.
[34] X. Zhang, H. Chen, and H. Zhang, "Layer-by-layer assembly: from conventional to unconventional methods," Chemical Communications, pp. 1395-1405, 2007.
[35] H. Fukumoto and Y. Yonezawa, "Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye," Thin Solid Films, vol. 327, pp. 748-751, 1998.
[36] M. S. Bradley, J. R. Tischler, and V. Bulović, "Layer‐by‐Layer J‐Aggregate Thin Films with a Peak Absorption Constant of 106 cm–1," Advanced Materials, vol. 17, pp. 1881-1886, 2005.
[37] S.-H. Chen, C.-H. Wang, Y.-W. Yeh, C.-C. Lee, S.-L. Ku, and C.-C. Huang, "Polarization filters with an autocloned symmetric structure," Applied optics, vol. 50, pp. C368-C372, 2011.
[38] J. Manifacier, J. Gasiot, and J. Fillard, "A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film," Journal of Physics E: Scientific Instruments, vol. 9, p. 1002, 1976.
[39] J. A. Woollam and P. G. Snyder, "Fundamentals and applications of variable angle spectroscopic ellipsometry," Materials Science and Engineering: B, vol. 5, pp. 279-283, 1990.
[40] D. Yokoyama, "Molecular orientation in small-molecule organic light-emitting diodes," Journal of Materials Chemistry, vol. 21, pp. 19187-19202, 2011.
[41] Y. Egawa, R. Hayashida, and J.-i. Anzai, "pH-induced interconversion between J-aggregates and H-aggregates of 5, 10, 15, 20-tetrakis (4-sulfonatophenyl) porphyrin in polyelectrolyte multilayer films," Langmuir, vol. 23, pp. 13146-13150, 2007.
[42] P. K. Raychaudhuri, J. Madathil, J. D. Shore, and S. A. Slyke, "Performance enhancement of top‐and bottom‐emitting organic light‐emitting devices using microcavity structures," Journal of the Society for Information Display, vol. 12, pp. 315-321, 2004.
[43] B. Y. Jung, N. Y. Kim, C. Lee, and C. K. Hwangbo, "Control of resonant wavelength from organic light-emitting materials by use of a Fabry–Perot microcavity structure," Applied optics, vol. 41, pp. 3312-3318, 2002.
[44] H.-S. Wei, C.-C. Jaing, Y.-T. Chen, C.-C. Lin, C.-W. Cheng, C.-H. Chan, et al., "Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities," Optics express, vol. 21, pp. 21365-21373, 2013.
[45] D. Lidzey, T. Virgili, D. Bradley, M. Skolnick, S. Walker, and D. Whittaker, "Observation of strong exciton–photon coupling in semiconductor microcavities containing organic dyes and J-aggregates," Optical Materials, vol. 12, pp. 243-247, 1999.
[46] R. J. Holmes and S. R. Forrest, "Strong exciton–photon coupling in organic materials," Organic Electronics, vol. 8, pp. 77-93, 2007.
[47] T. Virgili, D. Coles, A. Adawi, C. Clark, P. Michetti, S. Rajendran, et al., "Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity," Physical Review B, vol. 83, p. 245309, 2011.
指導教授 李正中(Cheng-chung Lee) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明