博碩士論文 101226021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:135 、訪客IP:54.91.41.87
姓名 陳薇婷(Wei-Ting Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽鍺薄膜及其應用於光偵測器之研製
(Investigation of Investigation of Investigation of Investigation of SiGe SiGe Thin Films and hin Films and hin Films and hin Films and hin Films and hin Films and Their Their Application in Application in Application in Application in Application in Photodetectors Photodetectors Photodetectors Photodetectors)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較
★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質★ 熔融法折射式微透鏡陣列之設計製造與檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於光纖通訊的發展,使得紅外光偵測器的重要性與日俱增。傳統紅外光檢測器大多使用三五族材料來製作,但是三五族材料的製程難以和矽製程技術整合,所以使用吸收波長較矽更為寬廣的矽鍺材料取代三五族材料製備紅外光偵測器可使製程成本降低並可將其整合至矽基積體電路上。目前常見的PIN矽鍺紅外光偵測器大多使用磊晶材料做為其吸收層,但磊晶薄膜的成長溫度大多都在500度以上,在製程整合上高溫將會使元件製程受限且成本提高,若能使用低溫成長技術成長高結晶矽鍺薄膜將其應用於光偵測器即可達到低成本、製程易整合等優點。
   本論文是利用電子迴旋共振化學氣相沉積法(Electron Cyclotron Resonance Chemical Deposition, ECR-CVD) 低溫沉積結晶矽鍺薄膜探討其特性並應用於紅外光偵測器。矽鍺薄膜研究使用光放射光譜儀可即時監控矽鍺含量比和利用電漿中Hα*/(SiH*+GeH*)解離量可以推測薄膜的結晶趨勢。薄膜之光學能隙可藉由調變矽鍺薄膜中鍺含量的比例從0至0.56使光學能隙從2.02 eV變化至1.33 eV。接著為我們於鍺含量為0.56之薄膜改變微波功率、氫氣稀釋比,發現微波功率在1000 W和氫氣稀釋比為40的時候有最好的結晶率。
  在光偵測器的表現中,暗電流的大小和響應度的高低是評估偵測器好壞的重要因素。過高的暗電流會嚴重影響元件的訊雜比,而響應度則是在照光的時候光偵測器對光源的反應,所以一個好的偵測器必須具有暗電流值小、光響應強的特性。暗電流的降低可藉由減少內部缺陷和利用表面鈍化(passivation)來改善。實驗發現對薄膜進行退火可有效改善暗電流值,使暗電流從2.27×10-5 A降至7.41×10-6 A。而光電流(響應)影響因素則是鍺含量的改變對其影響較劇烈,因為鍺含量的增加會增加長波長部份的吸收,使得鍺含量從0增加為0.56時其響應可由0.034 A/W提高至0.195 A/W。

摘要(英) Recently, infrared photodetectors have attracted much attention because of the development of optical communication system. Although infrared photodetectors have been built in III-V compound semiconductors, the use of SiGe is advantageous in terms of compatibility with Si integrated circuit technology and lower cost of fabrication. Several techniques for growing epi-SiGe photodetector have been reported. However, high temperature (>500oC) growth is disadvantage for device fabrication and more expensive, so in order to solve this problem, many researches have been doing efforts to grow the SiGe films and photodetector under low substrate temperature.
  In this thesis, we use the electron cyclotron resonance chemical vapor deposition (ECR-CVD) to deposit high-crystallinity SiGe thin films at a low temperature and apply it to fabricate phtodetector. During film deposition, We use optical emission spectroscopy (OES) to monitor the plasma distribution where the Ge*/(Si*+Ge*) can be predicted the germanium content in the SiGe films and the Hα*/(SiH*+GeH*) intensity ratio represents the trend of films crystallinity. As the Ge fraction increase from 0 to 0.58, the optical bandgap decreases from 2 eV to 1.4 eV. When the microwave power is 1000 W and hydrogen dilution ratio is 40, respectively, the films has best crystallinity.
  The requirement of photodetector are high responsivity and low dark current .The reduction of dark current can be improve by reduction of defect in the film and interface. With 300 oC annealing process for 5 minutes, the dark current was significant reduced from 2.27×10-5 A to 7.41×10-6 A. It was found that as germanium content increase from 0 to 0.58, the responsivity increase from 0.034 A/W to 0.195 A/W.
關鍵字(中) ★ 矽鍺合金
★ 光偵測器
關鍵字(英) ★ Silicon germanium
★ photodetector
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究背景與動機 1
1-2研究目的與本文架構 2
第二章 文獻整理及基本回顧 3
2-1 矽鍺材料文獻回顧與原理 3
2-1.1 薄膜成長機制 4
2-1.2 矽鍺薄膜文獻回顧 5
2-2矽鍺光偵測器原理 9
2-2.1 PIN光偵測器工作原理 9
第三章 實驗方法與設備 15
3-1 製程設備介紹 15
3-3.1 ECR-CVD 設備介紹 15
3-1.2 離子濺鍍機 18
3-1.3電子槍蒸鍍系統 19
3-1.4 反應式離子蝕刻機 20
3-1.5快速退火爐 21
3-2矽鍺薄膜和光偵測器製程流程 22
3-2.1薄膜製程流程 22
3-2.2元件製作流程 23
3-3量測儀器與原理 26
3-3.1 光放射光譜儀 26
3-3.2 傅里業變換紅外光譜儀 27
3-3.3 拉曼光譜儀 29
3-3.4 X光繞射儀 30
3-3.5 紫外光-可見光-紅外光光譜儀 31
3-3.6 X光光電子光譜儀 33
第四章 矽鍺薄膜沉積與特性分析 34
4-1 矽甲烷和鍺甲烷流量比對薄膜特性影響 34
4-2 調變製程參數探討其對結晶率之影響 41
4-2-1 微波功率對薄膜特性影響 42
4-2-2 氫氣稀釋比對矽鍺薄膜特性影響 45
4-2-3 ECR共振區位置對薄膜特性影響 48
第五章 矽基矽鍺光偵測器量測結果及分析 52
5-1 元件退火(表面鈍化)對矽基矽鍺光偵測器影響 53
5-2 矽鍺含量對矽基矽鍺光偵測器影響 54
5-3 吸收層結晶率對矽鍺光偵測器影響 56
5-4 吸收層厚度對矽基矽鍺光偵測器影響 58
5-5 對吸收層後退火處理對矽基矽鍺光偵測器影響 60
第六章 結論與未來發展 61
5-1 結論 61
5-2 未來發展 63
參考文獻 64
參考文獻 1. A. Rogalski, "Infrared detectors: an overview," Infrared Physics & Technology 43 (2002).
2. Y. Bogumilowicz, J.M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, T. Billon, "SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitax," Materials Science and Engineering B, 124-125 (2005).
3. M. Bauera, C. Schollhorn, K. Lyutovich, E. Kasper, M. Jutzi, M. Berroth, "High Ge content photodetectors on thin SiGe buffers," Materials Science and Engineering B89 (2002).
4. A. Matsuda, "Microcrystalline silicon. Growth and device application," J Non-Cryst
Solids 338, 1-12 (2004).
5. Douglas D. Cannon, Jifeng Liu, David T. Danielson, Samerkhae Jongthammanurak, Uchechukwu U. Enuha, Kazumi Wada, Jurgen Michel, and Lionel C. Kimerling, "Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates," Applied Physics Letters 91, 252111 (2007).
6. A. N. Larsen, "Defects in epitaxial SiGe-alloy layer," Materials Science and Engineering B71 (2000).
7. Hoon Choi, Ji Chul Bae, Dae Wha Soh, Sang Jeen Hong, "Selective Epitaxial Growth of SiGe on a SOI Substrate by Using Ultra-High-Vacuum Chemical Vapor Deposition," Journal of the Korean Physical Society 48 (2006).
8. Takehiro Iwasa, Tetsuya Kaneko, Isao Nakamura, and Masao Isomura, "Polycrystalline silicon germanium thin films prepared by aluminum-induced crystallization," Physica Status Solidi A-Applications and Materials Science 207 (2010).
9. C. Eisele , M. Nerding , H.P. Strunk , C.E. Nebel , M. Stutzmann, "Laser-crystallized microcrystalline SiGe alloys for thin film solar cells," Thin Solid Films 427 (2003).
10. 林秉璋,「利用疊層氫原子化學回火及電漿輔助化學氣相沉積技術成長低溫奈米矽鍺薄膜之研究」, 成功大學, 碩士, 94年6月。
11. Z. Yang, J. Alperin, W. I. Wang, S. S. Iyer, T. S. Kuan, F. Semendy, "In situ relaxed Si1-xGex epitaxial layers with low threading dislocation densities grown on compliant Si-on-insulator substrates," Journal of Vacuum Science & Technology B 16 (1998).
12. Yariv, and P. Yeh, "Optical waves in crystals," John Wiley & Sons, Inc (2003)
13. Chao-Yang Tsao, Xiaojing Hao, Martin A. Gree, "In situ growth of Ge-rich poly-SiGe:H thin films on glass by RF magnetron sputtering for photovoltaic applications," Applied Surface Science 257 (2011).
14. J.M. Hartmann, V. Benevent, J.P. Barnes, M. Veillerot, D. Lafond, J.F. Damlencourt, S. Morvan, B. Prévitali, F. Andrieu, N. Loubet, D. Dutartre, "Mushroom-free selective epitaxial growth of Si, SiGe and SiGe:B raised sources and drains," Solid-State Electronics 83 (2013).
15. Rui Xu, Wei Li, Jian He, Yan Sun, Ya-Dong Jiang, "Investigation of nanocrystallization of a-Si1−xGex:H thin films diluted with argon in the PECVD system," Journal of Non-Crystalline Solids 365 (2013).
16. Yusoff ARM, Syahrul MN, Henkel K, "Hydrogenated nanocrystalline silicon germanium thin films," Pramana-Journal of Physics (2007).
17. Simon M. Sze, Kwok K. Ng, "Physics of Semiconductor Devices." Wiley-Interscience (2006).
18. David Wood, “Optoelectronic Semiconductor Devices”, Prentice Hall, New York, (1994).
19. Adrian Vonsovici, Lili Vescan, R. Apetz, Alain Koster, and K. Schmidt, "Room Temperature Photocurrent Spectroscopy of SiGe/Si p-i-n Photodiodes Grown by Selective Epitaxy," IEEE Transactions on Electron Devices 45 (1998).
20. Ching-Ting Lee, Min-Yen Tsai, "High performance mechanisms of near-infrared photodetectors with microcrystalline SiGe films deposited using laser-assisted plasma enhanced chemical vapor deposition system" Optics Express (2013).
21. Jyh-Jier Ho, Y. K. Fang, Kun-Hsien Wu, W. T. Hsieh,S. C. Huang, G. S. Chen, M. S. Ju, and Jing-Jenn Lin, "High-Speed Amorphous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrate," IEEE Trans on Electron Devices 45 (1998).
22. Liping Zhang, Jianjun Zhang, Xin Zhang, Yu Cao, Ying Zhao, "Active roles of helium in the growth of hydrogenated microcrystalline silicon germanium thin films," Thin Solid Films 520 (2012).
23. A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasma," Thin Solid Films 337 (1999).
24. 黃惠良、曾百亨等,太陽電池,五南出版社,2008 年。
25. T. Matsui, K. Ogata, M. Isomura, M. Kondo, "Microcrystalline silicon–germanium alloys for solar cell application: Growth and material properties," Journal of Non-Crystalline Solids 352 (2006).
26. Jian-Yang Lin, Pai-Yu Chang, "Growth of poly-crystalline silicon–germanium on silicon by aluminum-induced crystallization," Thin Solid Films 520 (2012).
27. J. Tauc, "Optical properties and electronic structure of amorphous Ge and Si," Materials Research Bulletin (1968)
28.  Donald A. Neamen," Semiconductor Physics and Device," McGraw-Hill (2002)
29. Y. H. Chen, J. D. Hwang, C. Y. Kung, P. S. Chen, C. S. Wei, C. K. Wu, and J. C. Liu, "Improving the Performance of SiGe Metal–Semiconductor–Metal Photodetectors by Using an Amorphous Silicon Passivation Layer," IEEE Electron Device Letters 28 (2007).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明