博碩士論文 101226025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.149.24.204
姓名 黃偉恩(Wei-en Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 平面波展開法於磁化色散性光子晶體特性分析之應用
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 一維光子晶體等效非均向介值之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文採用平面波展開法 ( plane wave expansion ) 計算外加磁場後,電磁波在色散性介質光子晶體的能帶結構 ( band structure )。對於未加磁場的介電質,我們使用Drude modol 形式的色散型介電係數 ( permittivity )。本論文主要探討外加磁場對於色散性光子晶體能帶結構圖的影響,並討論利用能帶結構改變後所出現的光子能隙 ( photonic band gap ) 來控制電磁波在色散性光子晶體內部傳播狀態的可能性,以設計可操控光傳播的可調式光子晶體元件。
摘要(英) In this thesis, we use plane wave expansion (PWE) method to calculate the band structures of two-dimentional dispersive and magnetized dielectric photonic crystals consisting of periodically arranged cylinders whose permittivity has the Drude model type dispersion before applying the magnetic field. My research is mainly about the effects on the band structure when the external magnetic field is applied to the dispersive photonic crystals. Based on the band structure characteristics we also discuss the possibility of designing tunable photonic component to control the propagation of light by tuning the photonic band gap via changing the intensity of the applied external magnetic field.
關鍵字(中) ★ 平面波展開法
★ 磁化
★ 光子晶體
★ 色散
關鍵字(英)
論文目次 摘要....................................................i
Abstract ..............................................ii
致謝 .................................................iii
目錄 ..................................................iv
圖目錄 ................................................vi
表目錄 ..............................................viii
一、緒論 ................................................1
1.1 光子晶體簡介 ....................................1
1.2 論文方向 ........................................3
二、光子晶體理論基礎 .....................................4
2.1 傅立葉級數與倒晶格向量 ...........................4
2.1.1 一維傅立葉級數 ...........................4
2.1.2 二維傅立葉級數與倒晶格向量 .................5
2.2 介電函數與結構因子 ...............................8
2.2.1 介電函數之傅立葉展開 ......................8
2.2.2 結構因子之數值計算 .......................10
2.2.3 二維倒晶格向量之座標變換 ..................12
2.3 波動方程式 .....................................14
2.4 平面波展開─純量波法 .............................16
2.5 平面波展開─向量波法 .............................19
2.5.1 向量波法由k向量求頻率 ....................19
2.5.2 向量波法由k向量求頻率─二維空間 ............21
三、色散性光子晶體理論之計算 .............................23
3.1 色散性模型 .....................................23
3.1.1 Drude Model ............................23
3.1.2 Lorenz Model ...........................26
3.2 色散性光子晶體之平面波展開計算 ...................28
3.2.1 平面波展開法由 值求頻率 ..................28
3.3磁化之色散性光子晶體 .............................33
3.3.1 平面波展開法 ............................33
四、磁化色散性光子晶體模擬與分析 .........................40
4.1 磁化色散性光子晶體能帶分析 .......................40
4.2 磁場對光子晶體的影響 ............................45
五、結論與未來展望 ......................................60
5.1 結論 ..........................................60
5.2 未來展望 .......................................60
參考文獻 ...............................................61
參考文獻 [1] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[3] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals—Molding the Flow of Light, Princeton University Press, 1995.
[4] W.Jones, N. H.March, Theoretical Solif State Physics, Wiley-Interscience New York, 1973.
[5]C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, 2005.
[6] S.Kushwaha and P. Halevi, ”Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders”,Appl. Phys. Lett. 69,31 (1996).
[7] J. D. Jackson, Classical electrodynamics. 3rd Ed, John Wiley & Sons, New York, 1999.
[8] David J. Griffiths, “Introduction to Electrodynamics” , third edition, pp.398-404.
[9] David K. Cheng, “Field and Wave Electromagnetics” , second edition, pp.373-374.
[10]邱國斌、蔡定平,金屬表面電漿簡介,物理雙月刊(廿八卷二期)2006 年4 月. 472.
[11]Kurt E. Oughstun and Natalie A. Cartwright, On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion Optical, Society of America 2003.
[12] Kazuaki Sakoda, Noriko Kawai, and Takunori Ito, Photonic bands of metallic systems. I. Principle of calculation and accuracy, PHYSICAL REVIEW B, VOLUME 64, 045116.
[13] Osamu Sakai, Takui Sakaguchi, and Kunihide Tachibana, Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves, J. Appl. Phys. 101, 073304 (2007).
[14] Hai-feng Zhang, Shao-bin Liu, Xiang-kun Kong, Liang Zhou, Chun-zao Li et al., Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic waves”, J. Appl. Phys. 110, 026104 (2011).
[15] L. Qi, Photonic band structures of two-dimensional magnetized plasma photonic crystals, Journal of Applied Physics 111, 073301 (2012).
[16] Hai-Feng Zhang, Shao-BinLiu, Xiang-KunKong, Bo-RuiBian, Ya-NanGuo, Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field, Solid State Communications Volume 152, Issue 14, July 2012, Pages 1221–1229.
[17] Qi Li-Mei, Yang Zi-Qiang, Lan Feng, Gao Xi, Shi Zong-Jun, Liang Zheng, Dispersion properties of two-dimensional dispersive and anisotropic-magnetized-plasma photonic crystals, Acta Physica Sinica Vol.59, No.1, January, 2010.
[18]欒丕綱、陳啓昌,光子晶體(從蝴蝶翅膀到奈米光子學),五南,十月(2010)
[19] Bin Guo, Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal, Physics of Plasmas (1994-present) 16, 043508 (2009).
[20] Limei Qi, Ziqiang Yang, Feng Lan, Xi Gao, and Zongjun Shi, Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals, Physics of Plasmas (1994-present) 17, 042501 (2010).
[21] Qi Li-Mei, Yang Zi-Qiang, Lan Feng, Gao Xi, Li Da-Zhi, Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal, Chin. Phys. B Vol. 19, No. 3 (2010) 034210.
[22] V. Kuzmiak* and A. A. Maradudin, Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal, PHYSICAL REVIEW B, VOLUME 55, NUMBER 7
[23] Shuang Zhang,* Yi Xiong, Guy Bartal, Xiaobo Yin, and Xiang Zhang, Magnetized Plasma for Reconfigurable Subdiffraction Imaging, Phys. Rev. Lett. 106, 243901 (2011).
[24]Pi-Gang Luan, Zhen Ye, Structure factor formulas for two-dimensional photonic crystals, arXiv:cond-mat/0105428.
[25] Pi-Gang Luan and Kao-Der Chang, Photonic-crystal Lens Coupler Using Negative Refraction, PIERS ONLINE, VOL. 3, NO. 1, 2007.
[26] Xiang-Kun Kong, Shao-Bin Liu, Hai-Feng Zhang, Liang Zhou, and Chun-Zao Li, Band Structure Calculations for Two-Dimensional Plasma Photonic Crystals in Honeycomb Lattice Arrangement, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 19, OCTOBER 1, 2011.
指導教授 欒丕綱(Pi-gang Luan) 審核日期 2015-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明