博碩士論文 101226028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.227.114.125
姓名 陳威任(Wei-Ren Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 多層結構有機電晶體之研究
(Research on Multilayer Organic Field Effect Transistors)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文為實作並探討以具高載子遷移率的P型小分子材料(DNTT)與N型小分子材料(DFH-4T)製作之多層結構有機電晶體之特性,包括雙層結構的雙極性有機電晶體,以及三層結構的有機發光電晶體,並藉由有機層的薄膜形貌與微結構,以及材料能階等資訊,分析元件的光電特性及影響機制。
在雙極性有機電晶體中,我們進行DNTT及DFH-4T不同的堆疊順序與一系列不同上接觸電極的研究,以優化載子遷移率與注入效率。實驗中發現N型材料(DFH-4T)在介電材料(PMMA)上成膜時會形成特殊的晶體堆疊形貌。此特殊薄膜形貌對於隨後沉積的DNTT與上金屬接觸具有雙重效果:(1)P型材料(DNTT)沉積於其上仍具備良好的成膜品質和電洞遷移率;(2)金屬沉積於其上可滲透進入有機層,使金屬與有機層之間接觸面積增加,因此利用高功函數金屬作為電極也能有效注入電子。隨後,在使用DFH-4T /DNTT之先後堆疊順序與使用高功函數金屬(Ag)的情況下,我們成功證實電子及電洞載子遷移率皆達到1 cm2/Vs數量級的雙極性有機電晶體。
本研究接著在DFH-4T及DNTT有機材料之間插入一層發光層,提供電洞及電子複合的空間,使有機電晶體具備發光的特性。考量DFH-4T與DNTT的能階,我們選用能隙較小的紅光磷光材料(Ir(piq)3)作為客體發光材料,掺雜於主體螢光材料(Bebq2)中,形成發光層。我們進行一系列實驗,探討在發光層中磷光材料的掺雜比例,以及有機材料沉積順序和最下層材料的厚度對有機發光電晶體外部量子效率的影響。在磷光材料掺雜比例為10 wt %、DNTT/Bebq2:Ir(piq)3/DFH-4T的先後沉積順序、以及下層DNTT為10 nm的條件下,得到最高的外部量子效率達0.2 %。此發光電晶體之重要特色為具備近百微米的寬發光帶,並可產生高發光強度,具有發展顯示器應用之潛力。
摘要(英) This thesis investigates the multilayer organic field effect transistors fabricated with high-mobility P-type (DNTT) and N-type (DFH-4T) small molecular semiconductors. We characterize the devices including ambipolar field effect transistors and trilayer light-emitting transistors, and correlate their optoelectronic performance with the morphology, microstructures, and the energy levels of organic films.
For ambipolar field effect transistors, we perform a series of study on different deposition order of organic films and different top contact electrodes to optimize the mobilities and injection efficiencies of electrons and holes. We observe that N-type organic semiconductor material (DFH-4T) as deposited on dielectric material (PMMA) would form a unique morphology with randomly packed large-sized crystals. Such a unique morphology of DFH-4T has dual effects on the sequential deposition of DNTT and top contact metals: (1) The film quality of P-type materials (DNTT) remains good and hence a high mobility of holes; (2) Evaporated metals will easily penetrate into the bulk of organic films, resulting in an increased contact area between metals and organic films. Therefore, electron injection can be still efficient even using high work-function metals. With DFH-4T/ DNTT deposition order and high work function metal (Ag), we demonstrate the ambipolar organic field effect transistors with electron mobility and hole mobility exceeding 1 cm2/Vs.
Next, we insert a light-emitting layer into the DNTT and DFH-4T, to provide a space for electrons and holes to recombine and emit light. In consideration of the energy level of DNTT and DFH-4T, we choose the red phosphorescent material (Ir(piq)3) with a narrow energy bandgap as the guest material, and dope it into the fluorescence material (Bebq2) as the host material to form the light-emitting layer. We perform a series of experiments to understand the effects of the doping concentration of phosphorescent materials in the emitting layer, deposition order of organic semiconductors, and the thickness of the bottom layer (DNTT) on the EQE of organic lighting-emitting transistor. With the doping concentration of 5-10 wt %, deposition order of DNTT/Bebq2:Ir(piq)3/DFH-4T , and 10 nm DNTT as bottom layer, we achieve the highest EQE up to 0.2 %. This light-emitting transistor has significant features of the broad recombination zone approaching to 100 mm and the high emissive intensity, which is promising for display applications in the future.
關鍵字(中) ★ 電晶體
★ 有機
★ 多層式
★ 發光
關鍵字(英) ★ transistor
★ organic
★ multilayer
★ light-emitting
論文目次 摘要 ........................................................................................................ I
Abstract .............................................................................................. III
誌謝 ...................................................................................................... V
目錄........................................................................................................VI
圖目錄................................................................................................VIII
表目錄................................................................................................XIII
第一章 緒論.......................................................................................... 1
1-1 前言............................................................................................. 1
1-2 研究動機..................................................................................... 3
第二章 基本原理................................................................................. 5
2-1有機半導體內部載子傳輸機制.................................................. 5
2-2 電晶體理論................................................................................. 7
2-3 電晶體的電流對電壓關係與重要參數................................... 11
2-4 三層式有機發光電晶體的操作特性及發光機制................... 14
2-5 有機材料介紹........................................................................... 16
2-6 外部量子效率計算................................................................... 19
第三章 實驗部分.............................................................................. 20
3-1 實驗儀器....................................................................................20
3-2 量測儀器................................................................................... 25
3-3 實驗製程步驟........................................................................... 29
第四章 結果與討論.......................................................................... 32
4-1 單層及雙層有機電晶體........................................................... 32
4-1-1 單層N型有機電晶體............................................................ 32
4-1-2 單層P型有機電晶體............................................................. 40
4-1-3 具雙載子特性之雙層結構式有機電晶體................................. 42
4-1-4 雙層結構式有機電晶體之邏輯電路應用................................. 47
4-1-5 單層及雙層電晶體電性結果與討論....................................... 49
4-2 三層式有機發光電晶體........................................................... 50
4-2-1 三層式有機發光電晶體材料及結構介紹................................. 51
4-2-2 電洞傳輸層厚度對三層式有機發光電晶體的影響................... 54
4-2-3 發光層客體摻雜濃度對三層式有機發光電晶體的影響............ 59
4-2-4 倒置結構下三層式有機電晶體特性....................................... 70
4-2-5 三層式有機發光電晶體結果與討論....................................... 72
第五章 結論....................................................................................... 74
參考文獻.............................................................................................. 76
參考文獻 [1] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett., 51, 913 (1987).

[2] A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film," Appl. Phys. Lett., 49, 1210 (1986).

[3] Hyun Sook Byun, Yong - Xian Xu, Chung Kun Song," Fabrication of high performance pentacene thin film transistors using poly(4-vinylphenol) as the gate insulator on polyethyleneterephthalate substrates," Thin Solid Films , 493, 278 - 281 (2005).

[4] D. Wörhle, D. Meissner, "Organic solar cells" Adv. Mater., 3.129 (1991).

[5] Jung Hwa Seo, EbinazarB. Namdas, Andrea Gutacker, AlanJ. Heeger, Guillermo C. Bazan, "Solution - Processed Organic Light-Emitting Transistors Incorporating Conjugated Polyelectrolytes," Adv. Funct. Mater., 21,3667-3672 (2011).

[6] Tae-Hee Han, Youngbin Lee, Mi-Ri Choi, Seong-Hoo Woo, Sang-Hoon Bae, Byung Hee Hong, Jong-Hyun Ahn and Tae-Woo Lee, "Extremely efficient flexible organic light-emitting diodes with Modified graphene anode," NATURE PHOTONICS, 6(2012).
[7] Utz Zschieschang, Frederik Ante, Tatsuya Yamamoto, Kazuo Takimiya, Hirokazu Kuwabara, Masaaki Ikeda, Tsuyoshi Sekitani, Takao Someya, Klaus Kern, and Hagen Klauk, "Flexible Low-Voltage Organic Transistor and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability,"Adv. Mater., 22, 982-985 (2010).

[8] Tsuyoshi Sekitani, Ute Zschieschang, Hagen Klauk & Takao Someya, "Flexible organic transistors and circuits with extreme bending stability," nature materials (2010).

[9] Ebinazar B. Namdas, Peter Ledochowitsch, Jonathan D. Yuen, Daniel Moses and Alan J. Heeger, "High performance light emitting transistors," Appl. Phys. Lett., 92, 183304 (2008) .

[10] M. A. McCarthy, B.Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, " Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays," SCIENCE, 332 (2011).

[11] Raffaella Capelli, Stefano Toffanin, Gianluca Generali, Hakan Usta, Antonio Facchetti and Michele Muccini, "Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes, "Nature Materials, 9 (2010).


[12] J. Zaumseil, C.L. Donley, J.-S. Kim, R. H. Friend, H. Sirringhaus, "Efficient Top-Gate, Ambipolar, Light-Emitting Field-Effect Transistors Based on a Green-Light-Emitting Polyfluorene," Adv. Mater., 18, 2708-2712 (2006).

[13] Dinelli, F. et al, "High-mobility ambipolar transport in organic light-emitting transistors," Adv. Mater., 15,1416 - 1420 (2003).

[14] Hajime Nakanotani, Ryota Kabe Masayuki Yahiro, Taishi Takenobu, Yoshihiro Iwasa, and Chihaya Adachi,"Blue-Light-Emitting Ambipolar Field-Effect Transistors Using an Organic Single Crystal of 1,4-Bis(4-methylstyryl)benzene," Applied Physics Express, 1, 091801 (2008).

[15] James S. Swensen, Cesare Soci, Alan J. Heeger, "Light emission from an ambipolar semiconducting polymer field-effect transistor," Appl. Phys Lett., 87, 253511 (2005).

[16] Haibo Wang, and Donghang Yan," Organic heterostructures in organic field-effect transistor," NPG Asia Mater, 2, 69-78 (2010).

[17] Ben B.Y. Hsu, Chunhui Duan, Ebinazar B. Namdas, Andrea Gutacker, onathan D. Yuen, Fei Huang, Yong Cao, Guillermo C. Bazan, Ifor D. W. Samuel, and Alan J. Heeger, "Control of Efficiency, Brightness, and Recombination Zone in Light-Emitting Field Effect Transistors," Adv. Mater., 24, 1171 - 1175 (2012).

[18] Jianwu Shi, Haibo Wang, De Song, Hongkun Tian, Yanhou Geng, and Donghang Yan, "n-Channel, Ambipolar, and p-Channel Organic Heterojunction Transistors Fabricated with Various Film Morphologies, " Adv. Funct. Mater., 17, 397 - 400 (2007).

[19] Jun Wang, Haibo Wang, Xuanjun Yan, Haichao Huang, and Donghang Yan, "Organic heterojunction and its application for double channel field-effect transistors," Appl. Phys. Lett., 87, 093507 (2005).

[20] Constance Rost, David J. Gundlash, Siegfried Karg, and Walter Rieβ, "Ambipolar organic field-effect transistor based on an organic heterostructure,"J. Appl. Phys., Vol. 95, No 10 (2004).

[21] Hiromi Minemawari, Toshikazu Yamada, Hiroyuki Matsui, Jun′ya Tsutumi, Simon Hass, Ryosuke Chiba, Reiji Kumai & Tatsuo Hasegawq, "Inkjet printing of single-crystal films," NATURE, 475, 365 (2011).

[22] Frank Würthnner and Matthias Stolte, "Naphthalene and perylene diimides for organic transistors," Chem. Commun., 47, 5109-5115 (2011).

[23] He Yan, Yan Zheng, Robert Blache, Christopher Newman, Shaofeng Lu, Jasmin Woerle, and Antonio Facchetti, " Solution Processed Top-Gate n-Channel Transistors and Complementary Circuits on Plastics Operating in Ambient Conditions," Adv. Mater., 2008, 20, 3393-3398 (2008).

[24] Jianfeng Yuan, Jian Zhang, Jun Wang, Xuanjun Yan, Donghang Yan and Wu Xu," Bottom-contact organic field-effect transistor having low-dielectric layer under source and drain electrodes," Appl. Phys. Lett., 82, 3967 (2003).

[25] Mitchell A. McCarthy, Bo Liu, and Andrew G. Rinzler, " High Current Low Voltage Carbon Nanotube Enabled Vertical Organic Field Effect Transistors," Nano Lett., 10, 3467 - 3472 (2010).

[26] Keli F. Seidel.Lucieli Rossi.Regina M. Q. Mello.Ivo A.
Hümmelgen, " Vertical organic field effect transistor using sulfonated polyaniline/aluminum bilayer as intermediate electrode," J Mater Sci: Mater Electron,24:1052-1056 (2013).

[27] He Yan, Zhihua Chen, Yan Zheng, Christopher Newman, Jordan R. Quinn, Florian Dötz, Marcel Kastler & Antonio Facchetti, "A high-mobiluty electron-transporting polymer for printed transistors," Nature, Vol 457 (2009).

[28] Krishna Chytanya Chinnam, Swati Gupta, Helena Gleskova, "Aluminium oxide prepared by UV/ozone exposure for low-voltage organic thin-film transistors,"Journal of Non-Crystalline Solids, 358, 2512 - 2515(2012).

[29] Wentao Xu and Shi - Woo Rhee, "Compromise of electrical leakage and capacitance density effects: a facile route for high mobility and sharp subthreshold slope in low-voltage operable organic field-effect transistors,"J. Mater. Chem., 21, 998 - 1004 (2011).


[30] Max Shtein, Jonathan Mapel, Jay B. Benziger, and Stephen R. Forrest,"Effect of film morpfology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors," Appl. Phys. Lett., Vol. 81, No. 2 (2008).

[31] Myung - Han Yoon, Choongik Kim, Antonio Facchetti, and Tobin J. Marks,"Gate Dielectric Chemical Structure-Organic Field-Effect Transistor Performance Correlations for Electron, Hole, and Ambipolar Organic Semiconductors," J AM. CHEM. SOC, 128, 12851 - 12869 (2006)

[32] Yusaku Kato, Shingo lba, Ryohei Teramoto, Tsuyoshi Sekitani, and Takao Someya,"High mobility of pentacene field-effect transistors with polyimide gate dielectric layers," Appl. Phys. Lett., Vol. 84, No. 19 (2004).

[33] Max Shtein, Jonathan Mapel, Jay B. Benziger, and Stephen R. Forrest, " Effect of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor - phase deposited pentacene thin - film transistors," Appl. Phys. Lett., 81 (2002).

[34] Marcus Halik, Hagen Klauk, Ute Zschieschang, Günter Schmid, Christine Dehm, Markus Schütz, Steffen Maisch, Franz Effenberger, Markus Brunnbauer & Francesco Stellaccl, "Low-Voltage organic transistors with an amorphous molecular gate dielectric," Nature, 431 (2004).
[35] Mir Waqas Alam, Zhaokui Wang, Shigeki Naka, and Hiroyuki Okada, "Mobility enhancement of top contact pentacene based organic thin film transistor with bi-layer Geo/Au electrodes," Appl. Phys. Lett., 102, 061105 (2013).

[36] Hoon-Seok Seo, Ying Zhang, Min-Jun An, Jong-Ho Choi, "Fabrication and characterization of air-stable, ambipolar heterojunction-based organic light-emitting field-effect transistors," Organic Electronics, 10, 1293-1299 (2009).

[37] M. C. Gwinner, S. Khodabakhsh, M. H.Song, H. Schweizer, H. Giessen, and H. Sirringhaus, "Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor," Adv. Funct. Mater., 19(9), 1360-1370 (2009).

[38] V.G. Kozlov, V.Bulovic, P. E. Burrows, M. Baldo, and V. B. Khalfin, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J.Appl. Phys., 84, 4096 (1998).

[39] Simon Haas, Yukihiro Takahashi, Kazuo Takimiya, and Tatsuo Hasegawa,"High-performance dinaphtho-thiophene single crystal field-effect transistors, " Appl. Phys. Lett., 95,022111 (2009.)


[40] Peter Darmawan, Takeo Minari, Akichika Kumatani, Yun Li, Chuan Liu, "Reduction of charge injection barrier by 1-nm contact oxide interlayer in organic field effect transistors," Appl.Phys.Lett., 100, 013303 (2012).

[41] Jaehoon Park, Jong Mook Kang, Dong Wook Kim, Jong Sun Choi, "Contact resistance Variation in top-contact organic thin-film transistors with the deposition rate of Au source/drain electrodes," Thin Solid Films, 518, 6232 - 6235 (2010).

[42] S.D. Wang, T. Minari, T. Miyadera, Y. Aoyagi, and K. Tsukagoshi, "Bias stress instability in pentacene thin film transistors: Contact resistance change and channel threshold voltage shift," Appl. Phys. Lett., 92,063305 (2008).

[43] Chin-Wei Chu, Chao-Feng Sung Sung, Yuh-Zheng Lee, Kevin Cheng, "Improved performance in n-channel organic thin film transistors by nanoscale interface modification," Organic Electronics, 9, 262-266 (2008).

[44] A. Facchetti, M.Mushrush, H. E. Katz, T.J.Mark, "n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with HighCarrier Mobility," Adv. Mater., 22,33-38 (2010).

[45] Jana Zaumseil and Henning Sirringhaus, "Electron and Ambipolar Transport in Organic Field-Effect Transistors,"Chemical Reviews, Vol.107, 1296-1323 (2007).

[46] Lay-Lay Chua, Jana Zaumseil, Jui-Fen Chang, Eric C.-W. Ou, Peter K.-H. Ho, Henning Sirringhaus & Richard H. Friend,"General observation of n-type field-effect behaviour in organic semiconductors," Nature, Vol 434 (2005).

[47] Jeong Ho Cho, Do Hwan Kim, Yunseok Jang, Wi Hyoung Lee, Kyuwook Ihm, Jin-Hee Han, Sukmin Chung, and Kilwon Cho, "Effect of metal penetration into organicsemiconductors on the electrical properties of organic thin film transistors,"Appl. Phys Lett., 89, 132101 (2006)

[48] Lizhen Huang, Matthias Stolte, Hannah Bürckstümmer, and Frank Würthner, "High-performance Organic Thin-Film Transistor Based on a Dipolar Organic Semiconductor," Adv. Mater., 24, 5750-5754 (2012).

[49] Tatsuya Yamamoto, and Kazuo Takimiya "Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2′ ,3′-f] chalcogenopheno [3,2-b] chalcogenophenes, and Their Application to Field-Effect Transistors," J. AM. CHEM. SOC., 129, 2224-2225 (2007).

[50] Daisuke Kumaki, Masayuki Yahiro, Youji Inoue and Shizuo Tokito, "Ait stable, high performance pentacene thin-film transistor fabricated on SiO2 gate insulatro treated with β-phenethyltrichlorosilane," Appl. Phys. Lett., 90, 133511 (2007.)

[51] Ting-Hsiang Huang, Hsin-Chen Lai, Bo-Jie Tzeng, Zingway Pei, "Air stable organic complementary in inverter with high and balance noise margin based on polymer/metal oxide hybrid gate dielectrics,"Organic Electronics, 13,1365 - 1369 (2012).

[52] Ute Zschieschang, Frederik Ante, Tatsuya Yamamoto, Kazuo Takimiya, Hirokazu Kuwabara, Masaaki Ikeda, Tsuyoshi Sekitani, Takao Someya, Klaus Kern, and Hagen Klauk, "Flexible Low-Voltage Organic Transistors and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability,"Adv. Mater., 22, 982 - 985 (2010).

[53] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. -H. Huisman, P. W. M. Blom, J.C Hummelen, U. Scherf and T. M. Klapwijk, "Solution-processed ambipolar organic field-effect transistors and inverters," Nature Materials, 2 (200).

[54] Jianwu, Shi, Haibo Wang, De Song, Hongkun Tian, Yanhou Geng, Donghang Yan, "Ambipolar organic heterojunction transistors with various p-type semiconductors," Thin Solid Films, 516, 3270-3273 (2008).

[55] H.R.-Haghughi, S Forget, S. Chénais, A. Siove, M.-C. Castex, and E. Ishow, " Laser operation in nondoped thin films made of a small molecule organic red - emitter," Appl. Phys. Lett.,95, 033305 (2009).
指導教授 張瑞芬 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明