博碩士論文 101226037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:35.173.57.84
姓名 湯博雯(Po-Wen, Tang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 表面電漿於隨機結構與孤立奈米粒子之電磁局域增強與偏振旋性操控
(Study of surface plasmon enhanced local electromagnetic field and chiral polarization manipulation in random and isolated nanoparticles)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-1以後開放)
摘要(中) 本文研究表面電漿於隨機結構與孤立奈米粒子團的電磁場局域增強及偏振旋性操控特性。透過消光譜量測、廣義多粒子米氏散射模擬、超解析四波混合及數位化色度空間等方法,研究表面電漿於上述結構產生之模態分布、共振波長飄移、線性與非線性光學響應、偏振態旋轉,及其應用於奈米環境感測之潛力。
隨機結構包括以鈉-銀離子交換製做出含不同尺寸及填充率之銀奈米粒子複合玻璃與濺鍍方式製做島狀分布金薄膜。調控製程參數,前者可產生共振波長自380 nm至540 nm一系列的帶止濾波玻璃,而後者在接近滲流閥值時有最高的電磁場增強效應。由於薄膜於此閥值下各尺度自我相似之特性,利用四波混合的三階非線性光學效應,在大範圍隨機薄膜結構上以遠場光學方法標定出單一狹縫結構熱點,並於120 nm × 70 nm的尺度範圍追跡熱點中心的波長響應。
在孤立奈米粒子團的研究對象包括:單體、雙聚體及三聚體。這部分的研究排除了隨機結構或非孤立系統的平均效應,而能較清楚呈現各效應之成因及物理機制。在單體部分,藉由廣義多粒子米氏散射模擬光譜結合數位化色度空間,建立了一套利用色座標變化來量測奈米環境折射率變化的感測方式,以24位元的彩色攝影機可檢出折射率變化0.0021的環境改變,相當於傳統可攜式光譜儀解析能力的4.8倍。在雙聚體的研究上,發現此為能產生單一光學旋性的最基本單元。除探討狹縫模態單一光學旋性的成因外,亦評價以色度座標飄移檢測待測分子手徵特性之優劣。最後透過金奈米粒子三聚體,探討在奈米尺度任意操控偏振態的可能。沿三聚體的雙軸基底分別以線性及非線性光學四波混合上,探討其出射光的偏振態與波長間的關聯性。成功地的在孤立的三聚體操控產出偏振消光比 = 20的準線偏振光至 = 2.31的橢圓偏振光。搭配寬頻四波混合線性啁啾的特性,可簡易地以調整時間延遲來操控出射波長以及偏振特性,建立一波長偏振可調的奈米光源。
摘要(英) In this thesis, plasmonically enhanced local electromagnetic (EM) field and chiral polarization manipulation in random and isolated nanoparticles are studied. Based on extinction spectrum measurement, generalized multi-particle Mie (GMM) scattering simulation, super-resolved four wave mixing (FWM), and digitized chromatic space, one had dug out plasmonically modal distribution, resonant wavelength shift, linear and nonlinear optical responses, polarization rotation, and the potential for nano-environment sensing.
For random structures, Na+-Ag+ ion exchanged composite glass and sputtering deposited thin films with a variety of filling fractions (FF) are studied. By controlling fabrication parameters, composite glasses with resonant wavelength ranges from 380 to 540 nm are obtained. These can be used as a series of stop band filters. As for the random films, it is found that the highest enhancement for the local EM field occurs when the FF reaches to the percolation threshold. Due to the property of self-similarity at percolation threshold, a single nano-interstice associated with the plasmonic hot spot over a large range can be located using the 3rd order FWM effect in far field. Besides, the position of hot spots with various resonant wavelength can be traced within a region of 120 nm × 70 nm, reflecting the mophlogical features of the film.
Regarding to isolated nanoparticle clusters, plasmonic monomer, dimer, and trimer are studied. This part research rules out the ensemble averaged effect and thereby the physical mechanisms behind can be clearly seen. For plasmonic monomer, GMM simulation is combined with digitized color space, which establishes a new nano-environment sensing method. Without utilizing spectrometer, index variation as small as 0.0021 can be resolved based on the corresponding chromaticity shift measured by a 24 bit color CCD. Compared with conventional portable spectrometers, this resolution is more than 4.8 times. In the case of plasmonic dimers, we show that this is the very fundamental unit which can generate homo optical chirality. Apart from the discussion of the origin of homo optical chirality, we also assess the capability of identifying the handedness of chiral molecules by means of the enhanced chromaticity shift. Finally, for the case of plasmonic trimmers, the manipulation of polarization at nanoscale is studied. By pumping along 2 eigen-directions in combination of optical FWM, the polarization and the output wavelength can be controlled. We successfully obtained nearly linear polarized light with extinction  = 20 and elliptical light with  = 2.31, demonstrating the potential of constructing nanoemitters with tunable wavelength and polarization.
關鍵字(中) ★ 表面電漿子學
★ 奈米光學
★ 偏振
★ 旋性感測
★ 四波混頻
★ 色度學
★ 影像處理
關鍵字(英) ★ Plasmonics
★ Nano optics
★ Polarization
★ Chiral sensing
★ Four-wave mixing
★ Colorimetry
★ Image processing
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xv
第1章 序論 1
1.1 前言 1
1.2 表面電漿子系統簡介 2
1.3 研究動機 4
1.4 文獻回顧 5
1.5 論文架構 7
第2章 表面電漿波基本模態特性簡介 9
2.1 羅倫茲杜德模型 9
2.2 表面電漿子之結構效應與電磁場分布 14
第3章 大範圍表面電漿子系統波長及空間響應特性 21
3.1 離子交換玻璃含銀粒子複合材料色散特性 21
3.2 金薄膜上之特性 27
3.2.1 金薄膜成長過程基本形貌以及電性演化 27
3.2.2 金薄膜線性穿透光譜隨薄膜形貌變化 30
3.2.3 金薄膜之四波混頻非線性光學特性 31
3.3 金薄膜內獨立熱點特性 37
3.3.1 離散島狀金結構之四波混頻影像 37
3.3.2 連續滲流閥值下金薄膜之四波混頻影像 44
第4章 孤立奈米粒子團模態偏振簡介 52
4.1 米氏理論 52
4.2 奈米粒子團模態特性 60
4.3 光學偏振疊加 64
第5章 單團表面電漿子系統偏振旋光特性 68
5.1 顏色辨識檢測金單體局域環境折射率 68
5.1.1 光源端組成優化 69
5.1.2 偵測端攝影機參數優化 75
5.2 銀二聚體之光學旋性 82
5.3 銀二聚體分子旋性辨識 91
5.4 金三聚體線性散射 99
5.4.1 金三聚體散射光模態散射譜形特徵計算 99
5.4.2 金三聚體基本模態特性量測及以混合偏振激發散射光偏振特性 101
5.4.3 利用圓錐折射檢驗奈米粒子團散射偏振組合 110
5.5 金奈米粒子團四波混頻特性 115
5.5.1 偏振相依四波混頻 115
5.5.2 四波混頻頻譜干涉波長相依偏振檢測 117
第6章 結論與未來展望 129
6.1 結論 129
6.2 未來與展望 131
附錄 研究方法及技術 132
附錄A. 鈉銀離子交換製作 132
附錄B. 金薄膜填影像充率計算 136
附錄C. 金薄膜狹縫定位 138
附錄D. 孤立奈米粒子樣品準備及團定位 143
附錄E. 廣義多顆粒子米氏散射計算 146
附錄F. 消光譜量測系統 151
附錄G. 孤立奈米粒子團散射光譜量測 154
附錄H. 寬頻四波混頻量測系統 158
附錄I. 四波混頻雙光子放光背景消除方法 166
附錄J. 反捲積圖像轉換 169
附錄K. CIE色度座標系及影像顏色判定 173
附錄L. 光學偏振檢測系統 182
L.1. 偏振片波板直接檢偏 182
L.2. 圓錐折射檢測 184
L.3. 頻譜干涉 194
參考文獻 199
參考文獻 參考文獻
第1章
[1] Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).
[2] Luan, N., Ding, C. & Yao, J. A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber. IEEE Photonics J. 8, 1 (2016).
[3] Qin, J., Chen, Y.-H., Ding, B., Blaikie, R. J. & Qiu, M. Plasmonic gas sensing based on cavity-coupled metallic nanoparticles. J. Phys. Chem. C 121, 24740 (2017).
[4] Lim, J. K. & Joo, S.-W. Gold nanoparticle-based pH sensor in highly alkaline region at ph > 11: surface-enhanced Raman scattering study. Appl Spectrosc 60, 847 (2006).
[5] Yuan, Z., Hu, C.-C., Chang, H.-T. & Lu, C. Gold nanoparticles as sensitive optical probes. Analyst 141, 1611 (2016).
[6] Luo, W. et al. Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. (posted 11 January 2018, in press).
[7] Noor, M. O. & Krull, U. J. Camera-Based Ratiometric Fluorescence Transduction of Nucleic Acid Hybridization with Reagentless Signal Amplification on a Paper-Based Platform Using Immobilized Quantum Dots as Donors. Anal. Chem. 86, 10331 (2014).
[8] Zhou, J., Lei, G., Zheng, L. L., Gao, P. F. & Huang, C. Z. HSI colour-coded analysis of scattered light of single plasmonic nanoparticles. Nanoscale 8, 11467 (2016).
[9] Zhou, J. et al. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection. Nanoscale 9, 4593 (2017).
[10] Lodewijks, K., Van Roy, W., Borghs, G., Lagae, L. & Van Dorpe, P. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett. 12, 1655 (2012).
[11] Cao, S. et al. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber. Opt. Express 26, 3988 (2018).
[12] Stuart, D. A., Haes, A. J., McFarland, A. D., Nie, S. & Van Duyne, R. P. Refractive-index-sensitive, plasmon-resonant-scattering, and surface-enhanced Raman-scattering nanoparticles and arrays as biological sensing platforms. Proc. SPIE 5327, 60 (2004).
[13] Jana, D., Matti, C., He, J. & Sagle, L. Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing. Anal. Chem. 87, 3964 (2015).
[14] Ma, J., Zhan, L., Li, R. S., Gao, P. F. & Huang, C. Z. Color-encoded assays for the simultaneous quantification of dual cancer biomarkers. Anal. Chem. 89, 8484 (2017).
[15] Le Ru, E. C. & Etchegoin, P. G. Quantifying SERS enhancements. MRS Bull. 38, 631 (2013).
[16] Ding, S.-Y., You, E.-M., Tian, Z.-Q. & Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042 (2017).
[17] Hache, F., Ricard, D., Flytzanis, C. & Kreibig, U. The optical kerr effect in small metal particles and metal colloids: The case of gold. Appl. Phys. A 47, 347 (1988).
[18] Safonov, V. P. et al. Nondegenerate four-wave mixing in gold nanocomposites formed by ion implantation. Proc. SPIE 3788, 34 (1999).
[19] Drachev, V. P., Buin, A. K., Nakotte, H. & Shalaev, V. M. Size Dependent χ (3) for conduction electrons in ag nanoparticles. Nano Lett. 4, 1535 (2004).
[20] Zhang, Y. & Wang, Y. Nonlinear optical properties of metal nanoparticles: a review. RSC Adv. 7, 45129 (2017).
[21] Masia, F., Langbein, W., Watson, P. & Borri, P. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy. Opt. Lett. 34, 1816 (2009).
[22] Wang, S.-H., Lee, C.-W., Chiou, A. & Wei, P.-K. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol 8, 33 (2010).
[23] Wan, X.-Y. et al. Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells. Sci Rep 4, 4529 (2015).
[24] Cai, W. Applications of gold nanoparticles in cancer nanotechnology. NSA 1, 17 (2008).
[25] Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23, 217 (2008).
[26] Huang, X. & El-Sayed, M. A. Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine 47, 1 (2011).
[27] Bagley, A. F., Hill, S., Rogers, G. S. & Bhatia, S. N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7, 8089 (2013).
[28] Wang, S., Xu, H. & Ye, J. Plasmonic rod-in-shell nanoparticles for photothermal therapy. Phys. Chem. Chem. Phys. 16, 12275 (2014).
[29] Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A. & Ammar, R. A. A. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry 3, 135 (2010).
[30] Fayaz, A. M. et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine 6, 103 (2010).
[31] Burdușel, A.-C. et al. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8, 681 (2018).
[32] Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater 10, 911 (2011).
[33] Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Physics Reports 408, 131 (2005).
[34] Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photon. 1, 484 (2009).
[35] Shegai, T. et al. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer. Proceedings of the National Academy of Sciences 105, 16448 (2008).
[36] Li, L. et al. Plasmonic polarization generator in well-routed beaming. Light Sci. Appl 4, e330 (2015).
[37] Tahir, A. A., Schulz, S. A., De Leon, I. & Boyd, R. W. Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas. J. Opt. 19, 035001 (2017).
[38] Palomba, S., Danckwerts, M. & Novotny, L. Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[39] Panoiu, N. C., Sha, W. E. I., Lei, D. Y. & Li, G.-C. Nonlinear optics in plasmonic nanostructures. J. Opt. 20, 083001 (2018).
[40] Boltasseva, A. et al. Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23, 413 (2005).
[41] Wang, Z., Cheng, F., Winsor, T. & Liu, Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016).
[42] Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech 5, 783 (2010).
[43] Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 8, 14180 (2017).
[44] Maoz, B. M. et al. Amplification of Chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett. 13, 1203 (2013).
[45] Liu, Y., Wang, R. & Zhang, X. Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures. Opt. Express 22, 4357 (2014).
[46] Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333 (2011).
[47] Freestone, I., Meeks, N., Sax, M. & Higgitt, C. The Lycurgus cup – a Roman nanotechnology. Gold Bulletin 40, 270 (2007).
[48] Wood, R. W. On a Remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London 18, 269 (1902).
[49] Lord Rayleigh (Strutt, J., W.) On the dynamical theory of gratings. R. Soc. London, Ser. A 79, 399 (1907).
[50] Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am. 31, 213 (1941).
[51] Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).
[52] Powell, C. J. & Swan, J. B. Origin of the characteristic electron energy losses in aluminum. Phys. Rev. 115, 869 (1959).
[53] Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik 216, 398 (1968).
[54] Kretschmann, E. & Raether, H. Radiative Decay of non-radiative surface plasmons excited by light. Z Naturf. 23A, 2135 (1968).
[55] Maxwell Garnett, J., C. XII. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London 203, 385 (1904).
[56] Dubiel, M., Haug, J., Kruth, H., Hofmeister, H. & Schicke, K.-D. Ag/Na ion exchange in soda-lime glasses and the formation of small Ag nanoparticles. Materials Science and Engineering: B 149, 146 (2008).
[57] Kreibig, U. & Zacharias, P. Surface plasma resonances in small spherical silver and gold particles. Z. Physik 231, 128 (1970).
[58] Borys, N. J. & Lupton, J. M. Surface-enhanced light emission from single hot spots in Tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation. J. Phys. Chem. C 115, 13645 (2011).
[59] Axelevitch, A., Apter, B. & Golan, G. Simulation and experimental investigation of optical transparency in gold island films. Opt. Express 21, 4126 (2013).
[60] Pavaskar, P., Hsu, I.-K., Theiss, J., Hsuan Hung, W. & Cronin, S. B. A microscopic study of strongly plasmonic Au and Ag island thin films. Journal of Applied Physics 113, 034302 (2013).
[61] De Zuani, S., Peterseim, T., Berrier, A., Gompf, B. & Dressel, M. Second harmonic generation enhancement at the percolation threshold. Appl. Phys. Lett. 104, 241109 (2014).
[62] Weitz, D. A., Garoff, S., Gersten, J. I. & Nitzan, A. The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of Chemical Physics 78, 5324 (1983).
[63] Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985).
[64] Maxwell, D. J., Emory, S. R. & Nie, S. Nanostructured thin-film materials with surface-enhanced optical properties. Chem. Mater. 13, 1082 (2001).
[65] Perumal, J., Kong, K. V., Dinish, U. S., Bakker, R. M. & Olivo, M. Design and fabrication of random silver films as substrate for SERS based nano-stress sensing of proteins. RSC Adv. 4, 12995 (2014).
[66] Kang, M., Park, S.-G. & Jeong, K.-H. Repeated solid-state dewetting of thin gold films for nanogap-rich plasmonic nanoislands. Sci Rep 5, 14790 (2015).
[67] Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).
[68] Decker, M. et al. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501 (2009).
[69] Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).
[70] Valev, V. K., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517 (2013).
[71] Liu, Y. & Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494 (2011).
[72] Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).
[73] Hulteen, J. C. et al. Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B 103, 3854 (1999).
[74] Jensen, T. R., Schatz, G. C. & Van Duyne, R. P. Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet−visible extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103, 2394 (1999).
[75] Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).
[76] Weber, M. L. & Willets, K. A. Correlated super-resolution optical and structural studies of surface-enhanced Raman scattering hot spots in silver colloid aggregates. J. Phys. Chem. Lett. 2, 1766 (2011).
[77] Yan, B., Boriskina, S. V., & Reinhard, B. M. Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications. J Phys Chem C Nanomater Interfaces. 115 4578 (2011).
[78] Shegai, T., Brian, B., Miljković, V. D. & Käll, M. Angular distribution of surface-enhanced raman scattering from individual Au nanoparticle aggregates. ACS Nano 5, 2036 (2011).
[79] Chuntonov, L. & Haran, G. Maximal Raman optical activity in hybrid single molecule-plasmonic nanostructures with multiple dipolar resonances. Nano Lett. 13, 1285 (2013).
[80] Tian, X., Zhou, Y., Thota, S., Zou, S. & Zhao, J. Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy. J. Phys. Chem. C 118, 13801 (2014).
[81] Lee, H. et al. Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries. Nano Lett. 15, 4628 (2015).
[82] Funston, A. M., Davis, T. J., Novo, C. & Mulvaney, P. Coupling modes of gold trimer superstructures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3472 (2011).
[83] Wu, J. et al. Angle-resolved plasmonic properties of single gold nanorod dimers. Nano-Micro Lett. 6, 372 (2014).
[84] Panaro, S. et al. Dark to Bright Mode Conversion on Dipolar Nanoantennas: A Symmetry-Breaking Approach. ACS Photonics 1, 310 (2014).
[85] Black, L.-J., Wang, Y., de Groot, C. H., Arbouet, A. & Muskens, O. L. Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces. ACS Nano 8, 6390 (2014).
[86] Wang, L.-Y. et al. Circular differential scattering of single chiral self-assembled gold nanorod dimers. ACS Photonics 2, 1602 (2015).
[87] Fang, Z. et al. Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire. Nano Lett. 11, 1676 (2011).
[88] Kollmann, H. et al. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett. 14, 4778 (2014).
[89] Nazir, A. et al. Fano coil-type resonance for magnetic hot-spot generation. Nano Lett. 14, 3166 (2014).
[90] Aouani, H., Rahmani, M., Navarro-Cía, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotech 9, 290 (2014).
[91] Kaniber, M. et al. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci Rep 6, 23203 (2016).
[92] Wang, X. et al. Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett. 8, 2643 (2008).
[93] Urban, A. S. et al. Three-dimensional plasmonic nanoclusters. Nano Lett. 13, 4399 (2013).
[94] Prodan, E. A Hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).
[95] Prodan, E. & Nordlander, P. Plasmon hybridization in spherical nanoparticles. The Journal of Chemical Physics 120, 5444 (2004).
[96] Brandl, D. W., Mirin, N. A. & Nordlander, P. Plasmon modes of nanosphere trimers and quadrumers. J. Phys. Chem. B 110, 12302 (2006).
[97] Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 5 (2010).
[98] van Dijk, M. A. et al. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486 (2006).
[99] Tseng, T.-Y., Lai, P.-J. & Sung, K.-B. High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry. Opt. Express 19, 1291 (2011).
[100] Byers, C. P. et al. Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J. Phys. Chem. B 118, 14047 (2014).
[101] Giannini, V., Fernández-Domínguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888 (2011).
[102] Li, M., Cushing, S. K. & Wu, N. Plasmon-enhanced optical sensors: a review. Analyst 140, 386 (2015).
[103] Jiang, N., Zhuo, X. & Wang, J. Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054 (2018).
[104] Awada, C., Barbillon, G., Charra, F., Douillard, L. & Greffet, J.-J. Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy. Phys. Rev. B 85, 045438 (2012).
[105] Hövel, M., Gompf, B. & Dressel, M. Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 81, 035402 (2010).
[106] Ding, S., Wang, X., Chen, D. & Wang, Q. Optical percolation and nonlinearity of sputtered Ag island films. Opt. Express 14, 1541 (2006).
[107] Chen, P. & Liedberg, B. Curvature of the Localized Surface Plasmon Resonance Peak. Anal. Chem. 86, 7399 (2014).
[108] Bingham, J. M., Anker, J. N., Kreno, L. E. & Van Duyne, R. P. Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy. J. Am. Chem. Soc. 132, 17358 (2010).
[109] Piliarik, M., Kvasnička, P., Galler, N., Krenn, J. R. & Homola, J. Local refractive index sensitivity of plasmonic nanoparticles. Opt. Express 19, 9213 (2011).
[110] Cheng, X. et al. Color Difference Amplification between Gold Nanoparticles in Colorimetric Analysis with Actively Controlled Multiband Illumination. Anal. Chem. 86, 7584 (2014).
[111] Mekonnen, A., Pakizeh, T., Zubritskaya, I., Jönsson, G. E. & Dmitriev, A. Chiral light by symmetric optical antennas. https://arxiv.org/abs/1412.3618, (accessed July 2019).
[112] Sheikholeslami, S. N., García-Etxarri, A. & Dionne, J. A. Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett. 11, 3927 (2011).
[113] Hopkins, B., Liu, W., Miroshnichenko, A. E. & Kivshar, Y. S. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. Nanoscale 5, 6395 (2013).
[114] Li, Z., Shegai, T., Haran, G. & Xu, H. Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3, 637 (2009).
[115] Chuntonov, L. & Haran, G. Effect of symmetry breaking on the mode structure of trimeric plasmonic molecules. J. Phys. Chem. C 115, 19488 (2011).
[116] Chuntonov, L. & Haran, G. Trimeric plasmonic molecules: The role of symmetry. Nano Lett. 11, 2440 (2011).
[117] Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).
[118] Snatzke, G. Circular dichroism and optical rotatory dispersion— principles and application to the investigation of the stereochemistry of natural products. Angew. Chem. Int. Ed. Engl. 7, 14 (1968).
[119] Rhee, H. et al. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310 (2009).
[120] Rhee, H., Eom, I., Ahn, S.-H. & Cho, M. Coherent electric field characterization of molecular chirality in the time domain. Chem. Soc. Rev. 41, 4457 (2012).
[121] Engel, J., Liehl, E. & Sorg, C. Circular dichroism, optical rotatory dispersion and helix coil transition of polytyrosine and tyrosine peptides in non-aqueous solvents. Eur J Biochem 21, 22 (1971).
[122] Nuckolls, C. et al. Circular dichroism and UV−Visible absorption spectra of the Langmuir−Blodgett films of an aggregating helicene. J. Am. Chem. Soc. 120, 8656 (1998).
[123] Kelly, S. & Price, N. The use of circular dichroism in the investigation of protein structure and function. CPPS 1, 349 (2000).
[124] Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1751, 119 (2005).
[125] Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374 (2010).
[126] Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries. J. Phys. Chem. C 115, 7914 (2011).
[127] Poulikakos, L. V. et al. Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photonics 3, 1619 (2016).
[128] Hu, L., Xi, F., Qv, L. & Fang, Y. Searching the theoretical ultimate limits of probing surface-enhanced Raman optical activity. ACS Omega 3, 1170 (2018).

第2章
[129] Drude, P. Zur Elektronentheorie der Metalle. Ann. Phys. 306, 566 (1900).
[130] Mageto, M. J., Maghanga, C. M. & Mwamburi, M. The lorentz oscillator model simulation illustrating a broad maximum in the bulk reflectance for frequencies. African Review of Physics 7, 95 (2012).
[131] Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998).
[132] Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B 6, 4370 (1972).

第3章
[133] Saberi, A. A. Recent advances in percolation theory and its applications. Physics Reports 578, 1 (2015).
[134] Jung, Y., Chen, H., Tong, L. & Cheng, J.-X. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing. J. Phys. Chem. C 113, 2657 (2009).
[135] Thompson, R. E., Larson, D. R. & Webb, W. W. Precise Nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82, 2775 (2002).
[136] Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793 (2006).
[137] Babcock, H., Sigal, Y. M. & Zhuang, X. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt Nanoscopy 1, 6 (2012).
[138] Mukamel, E. A., Babcock, H. & Zhuang, X. Statistical deconvolution for superresolution fluorescence microscopy. Biophysical Journal 102, 2391 (2012).

第4章
[139] Lord Rayleigh (Strutt, J., W.) On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Phil. Mag. 47, 375 (1899).
[140] Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908).
[141] Xu, Y., L. & Gustafson, B., Å. S. A generalized multiparticle Mie-solution: further experimental verification. J. Quant. Spectrosc. Radiat. Transf. 70, 395 (2001).
[142] Ringler, M. Plasmonische Nahfeldresonatoren aus zwei biokonjugierten Goldnanopartikeln, PhD thesis, LMU München, (2008).
[143] Stein, S. Addition theorems for spherical wave functions. Quart. Appl. Math. 19, 15 (1961).
[144] García-Cámara, B. On light scattering by nanoparticles with conventional and non-conventional optical properties, PhD thesis, Universidad de Cantabria, 29 (2010).
[145] Wang, L., V. & Wu, H. I. Rayleigh theory and Mie theory for a single scatterer. In Biomedical Optics 17 (John Wiley & Sons, Inc., 2012).
[146] Gislén, L. Mie theory. http://home.thep.lu.se/~larsg/Site/MieTheory.pdf, (accessed July 2019).
[147] Rahmani, M. et al. Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. Small 10, 576 (2014).
[148] Zohar, N., Chuntonov, L. & Haran, G. The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 21, 26 (2014).
[149] Stella, L., Zhang, P., García-Vidal, F. J., Rubio, A. & García-González, P. Performance of nonlocal optics when applied to plasmonic nanostructures. J. Phys. Chem. C 117, 8941 (2013).
[150] Varas, A., García-González, P., Feist, J., García-Vidal, F. J. & Rubio, A. Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics 5, (2016).
[151] Cheng, D. K. Field and wave electromagnetics, 2th ed. (Addison-Wesley, 1989).

第5章
[152] Hunt, R., W., G. & Pointer, M., R. Measuring Colour, 4th ed. (Wiley, 2011).
[153] Brown, W. R. J. & MacAdam, D. L. Visual sensitivities to combined chromaticity and luminance differences. J. Opt. Soc. Am. 39, 808 (1949).
[154] Tian, X., Fang, Y. & Sun, M. Formation of enhanced uniform chiral fields in symmetric dimer nanostructures. Sci Rep 5, 17534 (2015).

附錄
[155] West, B. R. Ion-exchanged glass waveguide technology: a review. Opt. Eng 50, 071107 (2011).
[156] Lupascu, A. Modeling ion exchange in glass with concentration‐dependent diffusion coefficients and mobilities. Opt. Eng 35, 1603 (1996).
[157] Abouelleil, M. M. Ion exchange in glasses and crystals. Annu. Rev. Mater. Sci. 23, 255 (1993).
[158] Yang, X., Li, W., Li, Z., Wei, Y. & Huang, W. Depth profiles of Ag nanoparticles in silicate glass. Appl. Phys. A 90, 465 (2008).
[159] Suszy, M., Morawska-Kowal, T. & Krajczyk, L. Optical properties of small silver particles embedded in soda-lime silica glasses. Opt. Appl. 40, 397 (2010).
[160] Podlipensky, A., Abdolvand, A., Seifert, G. & Graener, H. Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles. Appl. Phys. A 80, 1647 (2005).
[161] Stalmashonak, A., Akin Unal, A., Seifert, G. & Graener, H. Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass. Proc. SPIE 7033, 70331Z (2008).
[162] Tyrk, M. A., Gillespie, W. A., Seifert, G. & Abdolvand, A. Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles. Opt. Express 21, 21823 (2013).
[163] Vogt, M. R. et al. Measurement of the optical constants of soda-lime glasses in dependence of iron content and modeling of iron-related power losses in crystalline Si solar cell modules. IEEE J. Photovoltaics 6, 111 (2016).
[164] Thiel, C. W. Four-wave mixing and its applications. http://staff.mbi-berlin.de/bfreyer/fwmixing.pdf, (accessed July 2019).
[165] Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).
[166] Renger, J., Quidant, R., van Hulst, N., Palomba, S. & Novotny, L. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett. 103, 266802 (2009).
[167] Renger, J., Quidant, R., van Hulst, N. & Novotny, L. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010).
[168] Renger, J., Quidant, R. & Novotny, L. Enhanced nonlinear response from metal surfaces. Opt. Express 19, 1777 (2011).
[169] Palomba, S. et al. Nonlinear plasmonics at planar metal surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3497 (2011).
[170] Palomba, S. et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nature Mater 11, 34 (2012).
[171] Jung, Y., Tong, L., Tanaudommongkon, A., Cheng, J.-X. & Yang, C. In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett. 9, 2440 (2009).
[172] Mahou, P. et al. Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos. Biomed. Opt. Express 2, 2837 (2011).
[173] Newport APPLICATION NOTE Supercontinuum generation in SCG-800 photonic crystal fiber. https://www.newport.com/medias/sys_master/images/images/ha8/ha9/8797285449758/Supercontinuum-Generation-in-SCG-800-App-Note-28.pdf, (accessed July 2019).
[174] CIE. (n.d.). CIE 15:2004 Tables Data. https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls, (accessed July 2019).
[175] Westland, S. Computational colour science using MATLAB 2e. https://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-science-using-matlab-2e, (accessed July 2019).
[176] Poynton, C. A. Digital video and HD: algorithms and interfaces. (Morgan Kaufmann, 2012).
[177] Ohno, Y. & Blattner, P. Chromaticity difference specification for light sources. http://files.cie.co.at/738_CIE_TN_001-2014.pdf, (accessed July 2019).
[178] Sappi etc. Defining and communicating color: The CIELAB system. https://cdn-s3.sappi.com/s3fs-public/sappietc/Defining%20and%20Communicating%20Color.pdf, (accessed July 2019).
[179] Company 235, LLC. CIE chromaticity explorer. http://company235.com/tools/colour/cie.html, (accessed July 2019).
[180] Wen, S. A color difference metric based on the chromaticity discrimination ellipses. Opt. Express 20, 26441 (2012).
[181] Stokes, M., Anderson, M., Chandrasekar, S. & Motta, R. A standard default color space for the internet –sRGB, Ver. 1.10, 1996. https://www.w3.org/Graphics/Color/sRGB.html, (accessed July 2019).
[182] Berry, M. V. & Jeffrey, M. R. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics. Progress in Optics 50, 13 (2007).
[183] Berry, M. V. Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike. J. Opt. A: Pure Appl. Opt. 6, 289 (2004).
[184] Berry, M. V., Jeffrey, M. R. & Lunney, J. G. Conical diffraction: observations and theory. Proceedings: Mathematical, Physical and Engineering Sciences 462, 1629 (2006).
[185] Peinado, A. et al. Conical refraction as a tool for polarization metrology. Opt. Lett. 38, 4100 (2013).
[186] Young, D. Hough transform for circles. https://www.mathworks.com/matlabcentral/fileexchange/26978-hough-transform-for-circles, (accessed July 2019).
[187] Bowlan, P. et al. Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. Opt. Express 14, 11892 (2006).
[188] Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308 (2009).
[189] Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156 (1982).
[190] Lim, S.-H., Caster, A. G. & Leone, S. R. Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy. Opt. Lett. 32, 1332 (2007).
指導教授 戴朝義(Chao-Yi, Tai) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明