博碩士論文 101226042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.200.74
姓名 林廷謙(Ting-Qian Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 校準低敏型Shack-Hartmann波前感測器
(Alignment insensitive Shack-Hartmann wavefront sensor)
相關論文
★ 中小型光學鏡組之高密度全場波前量測★ 使用液晶空間光線調制器之相移式光柵-十字狹縫量測裝置
★ 全像場同時取像像差量測★ 單頻位移與傾角量測干涉儀
★ 廣角物鏡之相對照度探討及其設計應用★ 新型零後焦長太陽能集光器的設計
★ 相移式干涉儀之系統校正及量測軟體的撰寫★ 非球面干涉儀之離軸對心校正
★ 高數值孔徑顯微物鏡設計★ Double Zernike Polynomial 校準光學系統
★ 薄型化光展量疊加太陽能集光器★ A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor
★ 雷射微型投影機波前量測技術★ 旋轉掃描式非球面干涉儀之演算法開發及應用
★ 利用Slanted-edge方法以及相位回復演算法量測光學系統的成像像差★ 非準直系統下Shack-Hartmann波前檢測器的校正補償
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Shack-Hartmann(SH)波前感測器是在波前檢測領域中一個強而有力的工具,擁有不遜於相移干涉儀(phase-shifting interferometer)與shearing干涉儀的量測表現。其亦可做高精度的絕對量測,並應用於位移感測與視光學等領域。然而,在一般的SH波前感測器架構中,其常有relay optics在感測器前,以把待測光束重新準直擴束後入射至感測器中。但relay optics並非完美,故其將會將額外的誤差與不確定性引進系統中。
  因此我們便建構出一個不需要relay optics的SH波前感測器,以降低系統不確定性並使系統簡化。我們捨棄傳統架構中的準直光束,直接改用聚焦光束入射至感測器中,使得系統中元件減少,亦即誤差來源減少,藉以提升系統表現。
  然而,由於感測器中所使用的透鏡陣列並非完美,故當聚焦光束入射至透鏡陣列上時,其會產生離軸像差,從而影響聚焦點的位置。而聚焦點的位置則直接影響到由其重建而出的波前,若點位置取得不對,則無法得到正確的波前,故需針對透鏡陣列做校正。此外,聚焦光束引起的聚焦點位移,會使得聚焦點移出其對應的透鏡區域,使得傳統點指派演算法無法正常指派定位出的點至其對應區域,從而得出錯誤的點位移量及錯誤的波前,故需選用非傳統並適用與此情況的演算法。最後,由於系統在新架構下變得更為簡單與純淨,使得以分析方法將校準誤差移除變為可能。透過此法,可將系統對於校準精度的需求降低。
  本論文中,我們展示了一個不需relay optics的SH波前感測器,並探討校準誤差自量測結果中移除的可行性。量測數個帶有不同f-number的透鏡並將量測結果與Fizeau干涉儀做比較,對系統進行探討驗證。
摘要(英) Shack-Hartmann(SH)wavefront sensor is a powerful and robust tool in wavefront sensing and has a good performance even compare with phase- shifting interferometer or shearing interferometer. It also can do absolute measurement in very high accuracy and has applied to many other fields like position sensing and ocular optics. However, in a common configuration of a SH wavefront sensor, there is always a relay optics placed before the sensor to relay the test beam. The relay optics is not perfect, thus additional aberrations and measurement uncertainties will be introduced into the system.
  To reduce the system uncertainties and additional aberrations, a system without relay optics is constructed. A convergent beam, instead of a collimated beam, is incident into the wavefront sensor. Without using the relay optics, the system aberrations and uncertainties could be reduced.
  However, since the lens arrays are not perfect, off-axis aberrations occurs when a convergent beam is incident on it. These aberrations incur shifts in the focal spot positions. Therefore, calibration on the lens array at different angle of incidence is needed. Besides, the shifts will larger than lens array’s lens pitch, which means that the shift spot will out of its relative lens region and this cannot be satisfied with the conventional algorithm. Thus, a proper spot assignment algorithm should be adopted. Furthermore, since the system becomes simpler and clearer, it is possible to remove the alignment error through analytical methods. Through remove the alignment error, the requirement for alignment could be looser.
  In this thesis, we demonstrate a SH wavefront sensor that is free of relay optics and investigate the feasibility of remove the alignment error. Measured the lenses with different f-number then compare the results with Fizeau interferometer and analyze the system’s performance.
關鍵字(中) ★ 波前感測器 關鍵字(英) ★ Shack-Hartmann
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
符號說明 xii
一、 緒論 1
1-1 Shack-Hartmann量測系統介紹 1
1-2 文獻回顧 3
1-3 研究動機 4
二、 原理 5
2-1 光學像差 5
2-1-1 波前像差 5
2-1-2 橫向像差 6
2-2 Zernike多項式 7
2-3 Shack-Hartmann sensor 10
2-3-1 量測原理 10
2-3-2 Centroding 11
2-3-3 波前重建 12
2-3-4 透鏡陣列 13
2-3-5 動態範圍與靈敏度 14
2-4 聚焦型Shack-Hartmann sensor 16
2-4-1 量測架構 16
2-4-2 Spot Assignment 16
2-4-3 透鏡陣列Calibration 18
2-5 校準低敏性Shack-Hartmann sensor 20
2-5-1 Zernike數值正交化 20
2-5-2 校準誤差 22
三、 實驗 23
3-1 實驗模擬 23
3-1-1 CodeV模擬 23
3-1-2 ASAP模擬 28
3-2 系統驗證 31
3-3 校準誤差量測 39
3-4 進階量測 49
四、 分析 55
4-1 感測器取樣 55
4-2 雜訊分析 58
4-3 Undersampling 61
4-4 系統應用 63
五、 結論 65
參考文獻 66
參考文獻 [1] D. Malacara, and I. Ghozeil, "Hartmann, Hartmann-Shack, and Other Screen Tests," in Optical Shop Testing, John Wiley & Sons, Inc., pp. 361- 397. 2007.
[2] B. C. Platt, and R. Shack, "History and Principles of Shack-Hartmann Wavefront Sensing," Journal of Refractive Surgery, vol. 17, pp. S571 - S577, 2001.
[3] J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor," Journal of the Optical Society of America A, vol. 11, pp. 1949-1957, 1994.
[4] T. O. Salmon, L. N. Thibos, and A. Bradley “Comparison of the eye′s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” Journal of the Optical Society of America A, vol. 15, pp. 2457-2465, 1998.
[5] B. Schäfer and K. Mann, "Determination of Beam Parameters and Coherence Properties of Laser Radiation by Use of an Extended Hartmann-Shack Wave-Front Sensor," Applied Optics, vol. 41, pp. 2809-2817, 2002
[6] J. Ares, T. Mancebo, and S. Bará, "Position and Displacement Sensing With Shack-Hartmann Wave-Front Sensors," Applied Optics, vol. 39, pp. 1511-1520, 2000.
[7] M. Nicolle, T. Fusco, G. Rousset, and V. Michau, "Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics," Optics Letters, vol. 29, pp. 2743-2745, 2004.


[8] B. M. Welsh, B. L. Ellerbroek, M. C. Roggemann, and T. L. Pennington, "Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor," Applied Optics, vol. 34, pp. 4186-4195, 1995
[9] G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, "Shack Hartmann wave-front measurement with a large F-number plastic microlens array," Applied Optics, vol. 35, pp. 188-192, 1996.
[10] J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, and B. W. Woods, "Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications," Applied Optics, vol 39, pp. 4540-4546, 2000.
[11] E. Hecht, "More on Geometrical Optics," in Optics, Addison-Wesley, pp. 181-219, 2002.
[12] J. L. Rayces, "Exact Relation between Wave Aberration and Ray Aberration," Optica Acta, vol. 11, pp. 85-88, 1964.
[13] J. Wyant, and K.Creath, "Basic wavefront aberration theory for optical metrology," Applied Optics and Optical Engineering, Vol. XI, pp. 28-34, 1992.
[14] A. M. Nightingale, and S. Gordeyev, “Shack-Hartmann wavefront sensor image analysis: a comparison of centroiding methods and image-processing techniques,” Optical Engineering, vol. 52, pp. 071413, 2013.
[15] W. H. Southwell, "Wave-front estimation from wave-front slope measurements," Journal of the Optical Society of America, vol. 70, pp. 998-1006, 1980.

[16] G. Yoon, "Wavefront Sensing and Diagnostic Uses," in Adaptive Optics for Vision Science, John Wiley & Sons, Inc., 2006.
[17] J. E. Greivenkamp, and D. G. Smith, “Graphical approach to Shack-Hartmann lenslet array design,” Optical Engineering, vol. 47, pp. 063601, 2008.
[18] S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindlein, and J. Schwider, "Wave-Front Reconstruction with a Shack-Hartmann Sensor with an Iterative Spline Fitting Method," Applied Optics, vol. 39, pp. 561-567, 2000
[19] G. Dai, and V. N. Mahajan, "Nonrecursive determination of orthonormal polynomials with matrix formulation," Optics Letter, vol. 32, pp. 74-76, 2007
[20] L. Seifert, J. Liesener, and H.J. Tiziani, "The adaptive Shack–Hartmann sensor," Optics Communications, vol. 216, pp.313-319, 2003.
指導教授 梁肇文(Chao-Wen Liang) 審核日期 2014-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明